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cov-Abstract: Emerging studies from SARS-CoV-2-infected patients indicate

a preponderant role of monocytes/macrophages in the pathogenesis of this viral infection,

in a similar way to that previously observed in other coronavirus outbreaks (SARS and

MERS). The clinical presentation of severe patients resembles viral-associated hemophago-

cytic syndrome, a rare condition previously seen during lethal influenza pandemics and

during previous SARS and MERS coronavirus outbreaks. SARS-CoV-2 infection triggers

an over-exuberant inflammatory response due to the development of a cytokine storm and the

depletion of the adaptative immune compartment, which may prelude sepsis in many cases.

The present review summarizes past evidence on the role of monocytes/macrophages in

previous coronavirus outbreaks and the emerging knowledge on their role in COVID-19

pathogenesis. Treatment strategies incorporating the blockade of migration and differentia-

tion of monocyte-macrophage, such as granulocyte macrophage-colony stimulating factor

inhibitors, might enhance the promising results seen so far with selective cytokine blockade.
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Introduction
Novel coronavirus infection (SARS-Cov-2) produces a severe respiratory syndrome,

similar to the severe acute respiratory syndrome (SARS) observed in previous cor-

onavirus outbreaks. This syndrome is associated to intensive care unit (ICU) admission

and high lethality rates.1 Emerging studies on SARS-CoV-2 pathogenesis point to

infiltration of pro-inflammatorymonocytes as keymediators of the hyper-inflammatory

response produced during viral shedding in the infectious phase, and mainly involved

in the cytokine storm observed during the inflammatory phase in severe cases. Zhang

et al observed that during SARS-CoV-2 infection, there are morphological and inflam-

mation-related phenotypic changes in peripheral blood monocytes that correlate with

the patient’s outcome, suggesting that an excessive monocyte-macrophage activation

may lead to the subsequent respiratory failure in severe patients.2 Characterization of

lung immune microenvironment through bronchoalveolar lavage fluid in first SARS-

CoV-2 patients also showed a predominant monocyte-derived macrophage infiltration

in the severely damaged lungs and a highly expanded clonal CD8+T cell in mild

patients; suggesting that a robust adaptive immune response is connected to

a successful control of SARS-CoV-2 infection.3

Dysregulation of the immune response is one of the hallmarks of severe SARS-

CoV-2 infection, with lower lymphocytes counts and an increased neutrophil–lympho-

cyte ratio. Acute phase reactants levels (C-reactive protein (CRP) and ferritin) are
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highly increased along with inflammatory cytokines such as

IL-6.4 This stimulates the production of an excessive, non-

effective host immune response by innate cells, which is

associated with severe lung injury. Hyperinflammation

observed in severe infection results in an immunosuppres-

sion status with a clinical course that resembles hemophago-

cytic syndrome, triggering the production of fatal

hypercytokinaemia and consequently multiorgan failure.5

Lessons Learned from SARS and
MERS Coronavirus Outbreaks
Other coronaviruses have caused major outbreaks of

severe respiratory infections in the 21st century. In 2002,

SARS-Cov-1 was identified as the cause of severe acute

respiratory syndrome (SARS) in the Guangdong province

of China, which subsequently spread to more than 30

countries with more than 8000 cases reported worldwide

and a 10% case fatality rate.6 Ten years later, an outbreak

of another coronavirus in the Arabian Peninsula was iden-

tified, called Middle East respiratory syndrome (MERS),

provoking a severe, acute respiratory illness similar to

SARS with nearly of 2500 cases in at least 27 countries.7

These previous highly pathogenic human respiratory

coronaviruses showed close similitudes with the current

SARS-CoV-2 outbreak, triggering an exuberant inflamma-

tory response leading to respiratory failure and lung

damage. Studies of these previous coronavirus outbreaks

showed that a robust viral replication was accompanied by

a delayed type I interferon (IFN-I) signalling and a lung

immunopathology with very low survival.8,9 This delayed

activation of the IFN-I pathway and promoted the accumu-

lation of inflammatory monocytes infiltrating from periph-

eral blood, resulting in a cytokine storm and the absence of

a virus-specific T cell response. A characteristic of patients

who developed severe SARS was an increased number of

macrophages in the lungs10,11 signalling this cell as the key

mediator to lung destruction.

Furthermore, human coronaviruses have showed their

ability to infect human leukocytic cell lines and peripheral

blood mononuclear cells.12 Moreover, coronavirus infec-

tion of a primary monocytic cell line leads to cell activa-

tion and an aberrant production of pro-inflammatory

mediators with increased chemoattraction. This observa-

tion suggests that, for some human coronavirus, mono-

cytes/macrophages could serve as a reservoir which,

consequently, would work as vectors for viral dissemina-

tion to other tissues.13,14 This fact has so far not been

proven for SARS-CoV-2. Infection of macrophages

might be enhanced by an antibody-dependent effect,

where previous non-neutralizing antibodies against coro-

navirus facilitate binding to Fc receptors in monocytes and

macrophages.15 In vitro infection of human macrophages

by SARS-CoV-1 induced high expression of chemokines

such as CXCL10 and CCL2 and a poor induction of

Interferon-β.16 In another study, strong up-regulation of

several inflammatory chemokines (MIP-1α, RANTES,

IP-10 and MCP-1) linked to a low expression of the

antiviral cytokines interferon-α/β/γ and IL-12 in SARS-

infected monocytes was interpreted as a escape mechan-

ism for coronavirus.17

Differences in the transcriptional profile of monocytic

cells infected with different coronaviruses were also

observed. SARS-CoV-1 induced down-regulation of inter-

feron-α/β and cathepsin/proteasome genes, while hypoxia/

hyperoxia related genes were up-regulated. However, cor-

onavirus 229E (Cov-229E), causing common cold, does

not induce these changes, showing that regulation of

immune-related genes in monocyte/macrophage might be

important for differences in pathogenesis between corona-

virus strains.18 Modulation of intrinsic functions of mono-

cyte-derived macrophages and dendritic cells by

coronavirus-induced lung epithelial cytokines (IL-6 and

IL-8) was responsible for the exacerbated pathogenesis

during SARS-CoV-1 infection of human lung epithelial

cells in culture.19 Given the importance of monocyte/

macrophage cells during the immune response, it is possi-

ble that infection by coronaviruses and alteration of their

function may be an important clue to unravel the course of

infection in humans.

SARS-CoV-1 also demonstrated potential neurotrop-

ism, as several patients experienced central nervous symp-

toms during the course of the illness. Moreover, the brain

tissue revealed the presence of high amounts of the mono-

kine-induced by interferon-γ (MIG) produced by monocy-

tic cells, and infiltration of CD68+ monocytes/

macrophages and CD3+ T lymphocytes in the brain

mesenchyme20 during pathologic examination.

Cytokine Storm and
Immunopathology
A large number of clinical data collected from SARS-CoV

-2 patients suggest the presence of a mild-to-severe cyto-

kine storm in patients requiring admission, which has also

been argued as an important cause of death.5,21 Cytokine
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storm or cytokine release syndrome (CRS) is a form of

systemic inflammatory response usually triggered by

a variety of factors such as infections and drugs.22 CRS

occurs when large numbers of leucocytes are activated and

release pro-inflammatory cytokines, which recruits and

activates more leucocytes in a positive feedback loop of

hyperinflammation.23 Recently, a key role for macro-

phages in driving CRS was revealed by analysing CRS

produced following chimeric antigen receptor-modified

T (CAR T) therapy.24,25 These studies identified human

monocytes as the major source of IL-1, IL-6 and nitric

oxide – the main hallmarks of CRS. Monocyte depletion

or therapeutic depletion of IL-6 and IL-1 prevented CRS

in this model. Similarly, in two clinically relevant animal

models, depletion of macrophages at disease onset was

shown to decrease lethality and limit the cytokine storm,

pointing to macrophage-based therapies for CRS.26

CRS is closely linked to the macrophage activation

syndrome (MAS), a life-threatening complication of several

autoimmune diseases related to hemophagocytic lympho-

histiocytosis (HLH). MAS is characterized by pancytope-

nia, liver insufficiency, hyperferritinemia, coagulopathy

and neurologic symptoms due to uncontrolled proliferation

of well-differentiated macrophages; leading to widespread

hemophagocytosis and cytokine overproduction.27,28

Severe COVID-19 patients developing pneumonia exhi-

bit features of the systemic hyper-inflammation that is char-

acteristic of MAS.29,30 This overexuberant immune response

associated with MAS may be driving SARS-CoV-2 related

adult respiratory distress syndrome (ARDS), as typical of

severe SARS pathogenesis.

At the same time, viral infection can trigger MAS and

HLH, in what is known as virus-associated hemophagocytic

syndrome (VAHS), a severe complication of various viral

infections often resulting in multiorgan failure and death.31

These phenomena have been observed during lethal influ-

enza pandemics, such as 2009 influenza A H1N1, 1998

avian influenza H5N1, and 1918 Spanish flu H1N1.32,33

VAHS clinical course presented as an aggressive, life-

threatening condition, analogous to HLH, and associated

with massive pro-inflammatory cytokine release, elevated

plasma levels of acute phase reactants, and the accumula-

tion of activated T-lymphocytes and macrophages in var-

ious organs. Further, VAHS has been linked to the high

fatality rate in MERS-Cov outbreak and SARS-CoV,34

and is now linked to the current SARS-CoV-2.5,35

Also, MAS and VAHS are linked to thrombotic events

and coagulopathy36,37 highlighting the key role of monocyte-

macrophages in the regulation of coagulation events.38

Monocytes andmacrophages can act as procoagulant factors,

and interact with blood coagulation mechanisms resulting in

thrombus formation and extravascular fibrin accumulation39

COVID-19 is linked to a microvascular vessel obstructive

thrombo-inflammatory syndrome in lung and other vital

organs, leading to multiple organ failure and death.40,41

Action of IL-6 and GM-CSF on
Monocyte-Macrophage
Differentiation
IL-6 and granulocyte macrophage-colony stimulating fac-

tor (GM-CSF) are cytokines closely linked to regulation of

monocyte activation and differentiation to macrophages.

Both cytokines increased during the cytokine storm in

SARS-CoV-2 patients requiring ICU29 and are involved

in the immunopathology of autoimmunity and the inflam-

matory condition; they were identified as therapeutic

blockade targets of the cytokine storm during systemic

inflammatory responses, as observed in MAS and

HLH.42,43 In this sense, emerging reports indicate that

SARS-CoV-2 infection precedes the onset of various auto-

immune and autoinflammatory diseases, including the

newly described paediatric inflammatory multisystemic

syndrome.44 This new evidence reinforces the link

between infectious diseases and the triggering of autoim-

mune and autoinflammatory sequelae.45

IL-6 is an essential factor in the molecular control of

monocyte activation and differentiation. It is secreted by

a variety of cellular types, including macrophages, fibro-

blasts, T-cells and endothelial cells46 in response to infec-

tion, and it sends out an early warning signal to the entire

body, activating inflammatory events and immunity. IL-6

regulates the differentiation of monocytes to macrophages,

up-regulating expression of functional GM-CSF receptors

on monocytes, and switching the differentiation of mono-

cytes from dendritic cells with antigen-presenting func-

tions to inflammatory macrophages.47 IL-6 is the chief

stimulator of the production of most acute phase proteins,

and critical for the febrile response. During systemic

inflammation such as in MAS, IL-6 is pyrogenic by bind-

ing to IL-6 receptors on brain endothelial cells to induce

prostaglandin synthesis and aggravate inflammation;48

furthermore, it dictates the transition from acute to

chronic inflammation by changing the nature of the leuco-

cyte infiltrate from polymorphonuclear neutrophils to

monocyte/macrophages.49
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Obesity and diabetes, both risk factors for greater

severity in COVID-19 patients, are closely related to per-

turbation of the monocyte compartment, with a marked

shift toward a pro-inflammatory phenotype which might

contribute to the development of low-grade inflammation

observed in obesity.50 IL-6 has been highlighted as

a driver of this metabolic inflammation51 and therefore

increased risk for severe COVID-19 condition.

Moreover, during CRS, IL-6 is an important member of

the cytokine network and plays a key role in acute inflam-

mation. In SARS-CoV-2 infection, blockade of IL-6 signal

transduction with Tocilizumab has become an important

therapeutic weapon in a small series of severe cases with

early reports of success; this evidence demonstrates that

blockade of cytokine storm is an effective therapeutic

option.21

GM-CSF, another monocyte/macrophage-related cyto-

kine, has an important effect under inflammatory condi-

tions, promoting neutrophil and monocyte migration,

proliferation and maturation. GM-CSF stimulates stem

cells to produce granulocytes and monocytes, and promotes

migration of monocytes to the inflammatory tissues and

differentiation to inflammatory macrophages.52 In autoim-

mune inflammatory diseases, such as rheumatoid arthritis

and multiple sclerosis, GM-CSF has a pathogenic role;

several inhibitory drugs are currently undergoing clinical

trials.53 Both autoimmune conditions are frequently asso-

ciated with viral infections, suggesting a key role for viruses

in the dysregulation of tolerance immune mechanisms and

the triggering of autoimmune diseases.54

In a similarway,GM-CSFblockade has beendemonstrated

to inhibit the cytokine release syndrome and neuroinflamma-

tion in the management of CART cell therapy-associated

toxicities,55 thus arising as a promising drug for SARS-CoV

-2 patients.

Monocytes, ACE2 and RAAS
It has been reported that ACE2 is the main host cell receptor

for human pathogenic coronaviruses (SARS-CoV-1, MERS

and SARS-CoV-2) and that it plays a key role in the entry of

the virus into the cell and viral spreading and pathogenesis,

interfering in the renin-angiotensin-aldosterone system

(RAAS).56 ACE2 is widely distributed in various human

tissues and may be a determinant factor of activity in severe

disease pathogenesis57 Several immune cells are involved

in the RAAS, playing a pivotal role in the regulation of

vascular inflammation and hypertension.58 Human mono-

cyte subsets exhibit different expression on angiotensin-

converting enzyme type 1 and 2 (ACE1 and ACE2) and

may be directly involved in the regulation of vascular

homeostasis via the RAAS mechanisms59 Therefore,

SARS-CoV-2 activated-monocytes could also be critically

involved in the pathogenic effect on the vascular home-

ostasis, through perturbation of ACE2 function.

RAAS activation in monocytes through its physiologi-

cal effectors plays a key role in promoting and maintaining

inflammation. Monocytes have been demonstrated to be

actively involved in all key stages of acute coronary syn-

dromes and constitute an important part of the coagulation

system60 Therefore, SARS-CoV-2 activation of monocytes

and perturbation of RAAS through ACE2-monocyte acti-

vation may trigger acute coronary syndromes in predis-

posed patients, as shown in COVID-19 infection.61

Antibody-Dependent Enhancement
of Macrophages
Antibody-dependent enhancement (ADE) of virus infec-

tion is a phenomenon whereby virus-specific non-

neutralizing antibodies enhance the entry of the virus,

and in some cases the replication, into monocytes/macro-

phages through interaction with Fc receptors;62 the result

is that a normally mild viral infection becomes life-

threatening. This phenomenon has been described as

mediator of acute lung injury in both SARS and MERS

outbreaks63,64 and demonstrated in animal models. This

evidence suggests that people exposed to MERS-

CoV who failed to develop a neutralizing antibody

response may be at risk of severe lung disease on re-

exposure to MERS-CoV.65 Similarly, evaluation of

SARS vaccines in mice induced protection against infec-

tion but challenged animals exhibited an exacerbated

immunopathologic-type lung disease.66 Anti-spike viral

protein antibodies were identified as mediators of the

infection of immune cells15,67 causing severe acute

lung injury by skewing macrophage responses during

acute SARS-CoV-1 infection.34 Recent studies have

revealed complex roles for antibodies in viral entry,

describing an ADE effect with neutralizing antibody to

the surface spike protein of coronaviruses, and molecular

mechanisms for ADE in coronavirus entry.68 Binding of

these antibodies to the viral spike triggers

a conformational change that mediates viral entry into

Fc receptor-expressing cells. This evidence reveals the

impact of antibody dosages on viral entry and serves as

a guide for future vaccine design and antibody-based
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drug therapies69 The potential danger of these subopti-

mal antibody responses has been also noted for COVID-

19 highlighting the importance of safety evaluation of

candidate vaccines.70

ADE effect on monocytes is also currently proposed as

an explanation for the geographic discrepancy in the

pathogenesis of the current SARS-CoV-2 epidemic around

the world. Prior exposure to similar antigenic epitopes

from local circulating coronaviruses might be a possible

explanation for the geographic differences of lethality

rates; it may also provide an explanation to the high

death rates among elderly people, more exposed to pre-

vious coronaviruses.71

This ADE mechanism is not exclusive to coronaviruses

and was also observed during influenza pandemics,72 in

dengue73 and VIH74 viral infections, leading to enhanced

pathology.

Targeting IL-6 and GM-CSF as
a Therapeutic Approach in
SARS-CoV-2 Patients
Several biological agents targeting pro-inflammatory cyto-

kines have demonstrated effectiveness in SARS-CoV-2

severe pathology75 Tocilizumab is a recombinant human

IL-6 monoclonal antibody, which binds to soluble and

membrane-bound IL-6 receptors (IL-6R). Blocking IL-6

signalling is highly effective in the attenuation of

inflammatory responses76 according to the experience

gained in rheumatic and other inflammatory diseases, and

the prevention of CRS caused by CART immunotherapy.

Other drugs proposed for avoiding harmful CRS syn-

drome in SARS-CoV-2 patients are JAK inhibitors drugs,

which inhibit signalling cascades for a variety of inflamma-

tory cytokines.77 However, one of the most significant con-

cerns about JAK inhibitors is the inhibition of IFN-α, with

anti-viral properties and theoretically useful against SARS-

Cov2; further, JAK inhibitors also inhibit IL-10, which is

the main regulator cytokine of the immune system.

An interesting alternative, in combination with cytokine

blocking drugs, could be the use of GM-CSF inhibitors to

inhibit monocyte/macrophage differentiation and migration to

pulmonary tissues. Several GM-CSF inhibitor drugs are cur-

rently undergoing clinical trials for rheumatic arthritis (RA)

and other inflammatory conditions. Otilimab (GSK3196165)

is a fully human antibody against GM-CSF, currently in Phase

III in patients with RA, and it has shown promising results in

initial developmental phases. Namilumab (MT203) is cur-

rently being tested for application in RA and psoriatic arthritis.

Lenzilumab (KB003), is a humanized monoclonal antibody

that targets GM-CSF originally designed for the treatment of

chronic myelomonocytic leukaemia; it is currently under clin-

ical trial for refractory large B-cell lymphoma and has

demonstrated to be effective in vitro to avoid CRS in CART-

associated toxicities.55 Very recently, GM-CSF neutralization

with lenzilumab showed positive results related to improved

Figure 1 Role of monocyte-macrophage in SARS-CoV-2 pathogenesis: 1) SARS-CoV-2 infection of lung tissue induces release of chemoattractant proinflammatory cytokines

by epithelial cells and fibroblasts. 2) Viral antibody-dependent enhancement (ADE) of macrophages could trigger SARS-CoV-2 infection of leucocytes. 3) Chemoattractant

gradient induces massive recruitment of inflammatory monocytes from peripheral blood. 4) Monocyte-macrophage activation and differentiation is triggered by GM-CSF and

IL-6. 5) An overexuberant activation of macrophages produces the cytokine release syndrome (CRS) responsible for the acute respiratory distress syndrome (ARDS) typical

of severe patients. 6) Therapeutical blockade of IL-6 and GM-CSF combination could avoid severe lung immunopathology in COVID-19 patients.
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clinical outcomes, oxygen requirement and ameliorated cyto-

kine storm in a single-centre study78 Mavrilimumab is

a human monoclonal antibody that inhibits human GM-CSF

receptor (GM-CSF-R) and is also an investigational drug for

the treatment of rheumatic diseases79 Also, very recently,

mavrilimumab treatment has shown improved clinical out-

comes in non-mechanically ventilated patients with severe

COVID-19 pneumonia and systemic hyperinflammation

in a single-centre study80 The use of this monocyte-

macrophage differentiation inhibitor drugs could be employed

at initial phases of CRS to avoid massive migration of inflam-

matory monocytes to pulmonary tissues, preventing the cyto-

kine storm and immunopathology associated to SARS-CoV-2

infection. A combination of GM-CSF inhibitor drugs and

selective cytokine blockers could act synergistically to ame-

liorate lung injury (Figure 1) in patients at high risk of ICU

admission and mechanical ventilation support. Monitorization

of pro-inflammatory cytokines and acute phase reactants

levels would help identify patients who can benefit from this

therapy. Results from ongoing clinical trials will provide more

extensive knowledge about indications and potential limita-

tions of this therapy.

Future Directions
Undoubtedly, monocyte-macrophage cells have

a preponderant role in the immunopathology associated

to severe outcome in SARS-CoV-2 infection. Given that

these cells are considered drivers of CRS, future studies

should focus on monitoring them, aiming to early detect

individuals initiating uncontrolled and ineffective immune

responses and developing targeted therapeutic approaches.

This could shed light on strategies to prevent or at least

decrease lung injury and the high lethal rates associated to

SARS-CoV-2. Treatment strategies that encompass block-

ing migration and differentiation of these cells, such as

GM-CSF inhibitors, might enhance the promising results

seen with selective cytokine blockade.
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