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Abstract

Background: The exposome is defined as encompassing all environmental exposures one 

undergoes from conception onwards. Challenges of the application of this concept to 

environmental-health association studies include a possibly high false-positive rate.

Objectives: We aimed to reduce the dimension of the exposome using information from DNA 

methylation to more efficiently characterize the relation between exposome and child body mass 

index (BMI).

Methods: Among 1,173 mother-child pairs from HELIX cohort, 216 exposures (“whole 

exposome”) were characterized. BMI and DNA methylation from immune cells of peripheral 

blood were assessed in children at age 6–10 years. A priori reduction of the methylome to 

preselect BMI-relevant CpGs was performed using biological pathways. We then implemented 

a tailored Meet-in-the-Middle approach to identify from these CpGs candidate mediators in the 

exposome-BMI association. Univariate linear regression models corrected for multiple testing then 

allowed to point out exposures most likely to be associated with BMI (“reduced exposome”). 

Associations of this reduced exposome with BMI were finally tested. The approach was compared 

to an agnostic exposome-wide association study (ExWAS) ignoring the methylome.

Results: Among the 2284 preselected CpGs (0.6% of the assessed CpGs), 62 were associated 

with BMI. Four factors (3 postnatal and 1 prenatal) of the exposome were associated with at 

least one of these CpGs, among which postnatal blood level of copper and PFOS were directly 

associated with BMI, with respectively positive and negative estimated effects. The agnostic 

ExWAS identified 18 additional postnatal exposures, including many persistent pollutants.

Discussion: Our approach incorporating a priori information identified fewer significant 

associations than an agnostic approach. We hypothesize that this smaller number corresponds 

to a higher specificity (and possibly lower sensitivity), compared to the agnostic approach. Indeed, 

the latter cannot distinguish causal relations from reverse causation, e.g. for persistent compounds 

stored in fat, whose circulating level is influenced by BMI.

Keywords

biological a priori; child body mass index; exposome; dimension reduction; DNA methylation; 
reverse causality

1. Introduction

The exposome concept recognizes that individuals are simultaneously exposed to a 

multitude of environmental factors from conception onwards (Wild, 2005). The exposome 

might explain an important, yet currently not accurately quantified, part of the variability in 

chronic diseases risk (Manrai et al., 2017). Since the 2010s, environmental epidemiology has 

progressively embraced the exposome concept and complemented common “single exposure 

studies” with studies relying on simultaneous measurements of several environmental factors 

(Agier et al., 2019; Buck Louis et al., 2011; Lenters et al., 2016), which, although 

not including all possible environmental factors, can be seen as examples of exposome 

studies. Amongst the many challenges faced by these exposome studies (Agier et al., 

2016; Siroux et al., 2016) is a possibly high false discovery rate (Agier et al. 2016). 
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Specifically, a simulation study considering a realistic exposome of 237 exposures assessed 

in 1200 individuals, with a proportion of the health outcome variability explained by the 

exposome varying between 3% and 70%, demonstrated that regression-based methods had 

a suboptimal sensitivity and high false discovery proportion (FDP) (Agier et al. 2016). All 

of the approaches tested displayed a FDP well above 5% when there was correlation within 

the exposome. The widely-used ExWAS (Exposome wide association study) approach, 

consisting in applying independent linear regression models and correcting association 

p-values for multiple testing, provided the highest sensitivity, at the cost of a very high 

FDP.

Dimension reduction could be a way to overcome this issue related to false positive findings. 

Dimension reduction can be performed agnostically, i.e. without relying on external 

information, with purely statistical techniques, such as variable selection via penalized 

regression (Lenters et al., 2018; Zou and Hastie, 2005) or Partial-Least-Square (PLS) 

regressions (Chun & Keles, 2010). However, as Agier et al. (2016) showed, these methods, 

even if they tend to perform better than ExWAS, are still expected to yield relatively high 

FDP.

Dimension reduction can also be biologically-driven. Relying on a priori information, one 

may integrate into statistical models relevant information from, for example, the toxicology 

and fundamental biology fields. Typically, this could be done by restraining analyses to 

exposures having biological plausibility, based on existing knowledge on associations with 

biological layers or on pathways linking exposures and the health outcome of interest. This 

logic has similarities with the concepts of Mode of Action and Adverse Outcome Pathways 
used in toxicology (OECD- Organisation for Economic Co-operation and Development, 

2012; Vinken, 2013). DNA methylation can be regarded as such an intermediate informative 

layer, as it is expected to be under environmental (in addition to genetic) influences 

(Baccarelli et al., 2009; Feil and Fraga, 2012; Joubert et al., 2016; Marioni et al., 2018) 

and as these epigenetic alterations can result in modifications of disease risk (Ho et al. 2012, 

Fasanelli et al., 2015). Epigenetic mechanisms, defined as changes in a chromosome which 

result in heritable phenotype without alterations in the DNA sequence (Berger et al., 2009), 

have a key role in regulating transcription and thus cell differentiation, cell functioning, and 

they can ultimately influence the phenotype.

An option to identify biomarkers associated with both exposures and the health outcome 

from a single intermediate DNA methylation layer is the Meet-in-the-Middle approach. 

It has been developed to point out intermediate biomarkers by considering as putative 

mediators the overlap between omics signals associated with an exposure and omics signals 

associated with the outcome (Chadeau-Hyam et al., 2011; Vineis and Perera, 2007).

In the case of an intermediate layer with a high dimension, one would have to test the 

associations of the intermediate putative biomarkers with exposures and health, which might 

entail a high false positive rate, in particular in the context of correlated exposures or 

biomarkers. It would appear relevant here to reduce the dimension of the intermediate 

layer, focusing on biological pathways (or intermediate biomarkers) a priori relevant for the 

outcome of interest.
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In this study, we aimed to identify, in an exposome context, environmental factors associated 

with child BMI, by using information from child methylome layer to reduce the exposome 

dimension. Childhood obesity and overweight, whose prevalence has rapidly increased 

over the last three decades (Finucane et al., 2011), are multifactorial conditions, and the 

most important risk factors, genetic predispositions and energy imbalance, may not suffice 

to fully explain the magnitude and rapidity of their recent prevalence increase (Park et 

al., 2017). The effects on BMI of some environmental factors, such as maternal smoking 

during pregnancy (Oken et al., 2008) or endocrine and metabolic disruptors exposures 

in early life (Thayer et al., 2012), have already been identified (Agay-Shay et al., 2015; 

Holtcamp, 2012). The environmental obesogenic hypothesis states that these early exposures 

play a key role in future obesity risk by altering metabolic programming (Janesick and 

Blumberg, 2011; Park et al., 2017). Only a few large multi-exposures (Braun, 2017; Fan 

et al., 2017; Lauritzen et al., 2018) or methylome-wide (Fradin et al., 2017; Rzehak et al., 

2017) approaches to the study of child postnatal growth have been conducted.

2. Materials and methods

2.1. Overall strategy

We relied on the HELIX project, in which the exposome (pregnancy and childhood), the 

DNA methylome (from peripheral blood in childhood) and BMI were assessed in 1,173 

mother-child pairs (Haug et al., 2018; Tamayo-Uria et al., 2019). Biological information 

from genetic databases was used to a priori reduce the methylome dimension. We 

implemented a « Meet-in-the-Middle » approach to identify exposures sharing differentially 

methylated CpGs (i.e. methylation sites) with BMI, as a way to build a reduced exposome. 

The association of this reduced exposome with BMI was then tested.

More precisely, the approach consisted in 5 steps:

a. preselection of CpGs located in genes relevant for BMI, using external databases;

b. test of the associations between the methylation levels of these CpGs and BMI;

c. test of the association between the methylation levels of the CpGs found to be 

associated with BMI in b) and each exposure, using child BMI as an adjustment 

factor, allowing to obtain a reduced exposome;

d. test of the association between BMI and the reduced exposome;

e. comparison with a purely agnostic ExWAS approach ignoring the methylome 

(i.e. without steps a) to c) allowing exposome dimension reduction, sensitivity 

analysis I).

We also implemented mediation analyses for the significant associations of the main 

approaches, sensitivity analyses testing the same approach without initial a priori selection 

of BMI-relevant CpGs, and additionally correcting for cell-type, as well as a sensitivity 

analysis considering the cell-types as the intermediate layer.

Cadiou et al. Page 4

Environ Int. Author manuscript; available in PMC 2021 December 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.2. Study population and outcome

The study was part of the Human Early Life Exposome (HELIX) project (Maitre et al., 

2018; Vrijheid et al., 2014), which aimed to describe the early-life exposome and its 

relations with child development and health.

In HELIX, six population-based European birth cohorts were pooled: BiB (Born in 

Bradford; United Kingdom) (Wright et al., 2013), EDEN (Étude des Déterminants pré 

et postnatals du développement et de la santé de l’ENfant; France) (Heude et al., 2016), 

INMA (INfancia y Medio Ambiente; Spain) (Guxens et al., 2012), KANC (Kaunus Cohort; 

Lithuania) (Grazuleviciene et al., 2015), MoBa (Norwegian Mother, Father and Child 

Cohort Study; Norway) (Magnus et al., 2016) and Rhea (Greece) (Chatzi et al., 2017), 

summing up to 1,301 mother–child pairs from singleton pregnancies for whom external 

exposures (Tamayo-Uria et al., 2019), health outcomes and confounders were measured and 

harmonized.

Height and weight were measured according to standardized procedures between 6 and 10 

years of age (Maitre et al., 2018). BMI was calculated as the mass in kilograms divided 

by the squared height in meters. We used age- and sex-standardized z-scores (named 

hereafter zBMI) according to the international World Health Organization reference curves 

(de Onis et al., 2007) in order to allow comparison with other studies on child BMI and 

to take into account the age-related shift in BMI in childhood. Various lifestyle, social and 

anthropometric factors were additionally assessed (Table 1).

2.3. Exposome assessment

Details of the exposome assessment have been published elsewhere (Haug et al., 2018; 

Tamayo et al., 2018). Among the 234 exposures assessed in HELIX (Tamayo et al., 2018), 

we excluded exposures with a time window of one day or one week, which were a priori 

considered unlikely to influence BMI. This led to 216 prenatal and postnatal exposures 

(list available in Supplementary Material 1). Metals, organochlorines, organophosphate 

pesticides, polybrominated diphenyl ethers (PBDE), perfluorinated alkylated substances 

(PFAS), phenols and phthalates were assessed by biomarkers in mothers during pregnancy 

from one urine or blood sample and in children at the time of the clinical examination, 

from a pool of two urine samples or one blood sample (Casas et al., 2018; Haug et al., 

2018). Built environment exposures, indoor air exposures, lifestyle factors, meteorological 

data, natural spaces quantification, noise, traffic, socio-economic capital and concentrations 

of disinfection by-products in drinking water were assessed during pregnancy and during the 

year before child examination by environmental models and questionnaires.

Exposures were transformed to approach normality, using a Box-Cox power transformation 

approach that chooses among log-transforming or raising the data to the powers −2, −1, 

−0:5, 1/3, 0.5, 1, or 2. Transformation chosen for each variable is detailed in Supplementary 

Material 1. Exposures were standardized using their interquartile range after imputing 

missing data for all exposures using mice R package (Buuren and Groothuis-Oudshoorn, 

2011).
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2.4. DNA Methylation

Peripheral blood was collected in EDTA tubes during the clinical examination that took 

place when children were between 6 and 10 years old. DNA was extracted from buffy 

coat; DNA methylation was assessed with the Infinium Human Methylation 450 beadchip 

(Illumina), following the manufacturer’s protocol. Sample locations on chips were drawn at 

random balancing chips for cohort and infant sex. Some samples were analysed in duplicate 

and a control HapMap sample was added in each 96-well plate.

DNA methylation data were pre-processed using the minfi R package (Aryee et al., 2014). A 

first quality control of the data was done with MethylAid package (van Iterson et al., 2014); 

probes with low call rate were then filtered following guidelines of Lehne et al. (2015). 

The functional normalization method was further applied, including Noob background 

subtraction and dye-bias correction (Triche et al., 2013). Several quality control checks were 

performed: sex consistency using the shinyMethyl package (Fortin et al., 2014); consistency 

of duplicates; genetic consistency for the samples that had genome-wide genotypic data. 

Finally, duplicated samples and control samples were removed as well as probes to measure 

methylation levels at non-CpG sites (Jang et al., 2017). A final filtering was performed to 

eliminate probes with a single-nucleotide polymorphism (SNP), probes that cross-hybridize 

and probes on sex chromosomes, restricting to 386,518 CpG probes available for 1,192 

subjects. The study was performed on the 1173 subjects among them who also had valid 

exposures data.

We then used Combat procedure to remove the batch effects supported by the slide. 

Methylation levels were expressed as Beta values (average methylation levels for an 

individual, between 0 for a never methylated CpG site and 1 for an always-methylated 

CpG site).

Cell types were computed according to Houseman et al. (2012) algorithm and Reinius 

reference panel (Reinius et al., 2012); tests of associations including methylation levels were 

corrected for cell types only in a sensitivity analysis.

Correlation within the methylome was estimated by averaging the Pearson’s correlation 

within 10 sets of 2284 randomly selected CpGs (same size as the restricted methylome, see 

next paragraph), to avoid computing all pairwise correlations between the 386,518 CpGs.

2.5. A priori preselection of BMI-relevant CpGs

Biological pathways a priori relevant for BMI were selected using the KEGG database 

(Tanabe and Kanehisa, 2012), searching with the key words “growth” “obesity” and “fat” in 

the following categories: “Human energy metabolism”, “Human lipid metabolism”, “Human 

endocrine system”, “Human digestive system”, “Human Excretory system”, “Human 

endocrine and metabolic diseases”, “Human genetic Information Processing: ‘Transcription 

– Translation - Folding, sorting and degradation - Replication and repair’ ”. We thus 

identified a list of 16 pathways (Supplementary Material 2) and the corresponding list of 

genes, which were restricted to the CpGs identified as enhancers, leading to a final dataset of 

2284 CpGs belonging to 387 genes and 16 different biological pathways (Supplementary 

Material 2), which we further refer to as the “restricted methylome”. Correspondence 
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between genes and CpGs as well as enhancer annotation and CpGs was based on Illumina 

annotation (Hansen, 2016). A sensitivity analysis not restricted to enhancers and these 16 

pathways was performed.

2.6. Meet-in-the-Middle and ExWAS approaches – statistical analyses

Our Meet-in-the-Middle design itself consisted in three successive steps, as described in 

2.1 (steps b), c) and d)): in step b), we tested the association of the methylation levels 

of the preselected CpGs with BMI considered as the outcome; in step c), we tested the 

associations (adjusted for child BMI) of each exposure with the CpGs found to be associated 

with BMI in b), leading to the identification of a “reduced exposome”; step d) is the test 

of the association of this reduced exposome (the exposures found to be associated to some 

CpGs in step c)) with the outcome.

Univariate linear regressions models were applied, and p-values were corrected for multiple 

testing using a FDR (False-Discovery Rate) control procedure (Benjamini & Hochberg, 

1995) at all steps involving regression modelling. Adjustment factors coded linearly in 

all our regression analyses were maternal pre-pregnancy BMI (additionally coded with a 

quadratic term in the exposome-outcome associations test), maternal education, maternal 

age, parental country of birth, maternal smoking during pregnancy, cohort (fixed effect), 

parity, trimester of conception, child age and child sex (see Table 1 for the categories). We 

additionally adjusted analyses of postnatal exposures effects for birth weight, breastfeeding 

duration and passive smoking during childhood (see Table 1) and models including 

methylation data for ethnicity (self-reported by parents, with different questions across 

the cohorts). At step c), correction for multiple testing was done considering together 

all associations tested between exposures and CpGs, i.e. a number of test equal to the 

product of the number of exposures with the number of CpGs associated with zBMI. A 

mediation analysis using package MMA (Yu and Li, 2017) was performed for exposures 

found associated with the outcome in step d), considering the CpGs both associated with the 

exposure and the outcome.

2.7. Sensitivity analyses and test of selection relevance

We compared our results to those obtained with a totally agnostic approach, consisting in 

an ExWAS between the exposome and zBMI, ignoring the methylome, with exactly the 

same statistical methods as in our step d) (sensitivity analysis I). Our agnostic ExWAS has 

some differences with that performed by Vrijheid et al. in Helix data (submitted manuscript, 

available upon request). In particular, we restricted the population of 1301 children used by 

Vrijheid et al. to 1173 children with methylome data (see paragraph 2.4.), and we chose 

to additionally adjust for trimester of conception, ethnicity and pre- and postnatal smoking, 

which could influence the methylome.

We performed three other sensitivity analyses. First, we repeated our approach with an 

additional adjustment on cell-type heterogeneity for all association tests involving the 

methylome (sensitivity analysis II). Second, we repeated our approach on the unrestricted 

methylome, i.e. without the first step of a priori selection of CpGs using information from 

biological pathways database and annotation (i.e. removing step a) and starting from step 
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b) with 386,518 CpGs). This modified step b) corresponds to a methylome-wide analysis, 

or MWAS (methylome-wide association study) in which we tested the association between 

methylation levels of the whole unrestricted methylome and zBMI (sensitivity analysis III).

To further inform the relevance of the a priori CpG selection of step a), the proportion 

of CpGs belonging to our candidate list of a priori BMI-relevant CpGs (i.e. our restricted 

methylome) among CpGs whose methylation levels was found associated with zBMI by 

MWAS was compared to the corresponding proportion in the whole methylome.

A workflow of the statistical analyses is shown Figure 1.

We additionally performed a fourth sensitivity analysis (sensitivity analysis IV) by repeating 

the whole Meet-in-the-Middle approach considering the cell-types instead of methylation 

data as the intermediate layer.

3. Results

3.1. Population characteristics

At the time of BMI measurement, mean age was 7.9 years. Mean child BMI was 16.9 

kg/m2 (5th and 95th percentiles: 13.8; 22.4), with substantial differences between cohorts 

(Supplementary Material 3), INMA and RHEA showing higher zBMI compared to the other 

cohorts. The other characteristics of the study population are given Table 1 and by cohorts in 

Supplementary Material 4.

The mean levels of the 216 exposures considered are displayed in Supplementary Material 1. 

Mean absolute correlation between quantitative exposures was 0.11 (5th and 95th percentiles: 

0.00, 0.35); the distribution of the coefficients of correlation is given in Supplementary 

Material 5.

Within the whole methylome, the estimated mean correlation was 0.09 while it was 0.12 for 

the 2284 CpGs of the reduced methylome (5th and 95th percentiles: 0.00; 0.37).

3.2. Meet-in-the-Middle approach

The analysis testing the association between the restricted methylome and zBMI (step 

b)) identified 62 CpGs belonging to 43 different genes (FDR adjusted p-values ≤ 0.05; 

Supplementary Material 6). The mean correlation among these CpGs was 0.59. Figure 2A 

shows a Manhattan plot of the FDR-adjusted p-values.

The test of association of these 62 CpGs with each of the 216 environmental factors adjusted 

for child BMI (step c)) identified 4 exposures associated with at least one CpG (Figure 2B, 

Table 2, Supplementary Material 7): copper (postnatal level), BPA (Bisphenol A, postnatal 

level), PFOS (Perfluorooctanesulfonic acid, postnatal level) and one meteorological variable 

(humidity, pregnancy average); this constituted our reduced exposome. In total, 53 CpGs 

were associated with at least one exposure.

The last step (step d)) identified that within the reduced exposome, postnatal blood 

copper and PFOS levels were directly associated with zBMI. The corresponding estimated 
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parameters were respectively 0.22 (95% CI: 0.14; 0.30; adjusted p-value, 1.43×10−6 ) and 

−0.13 (95% CI: −0.23; −0.04; adjusted p-value, 0.02) (see Table 3 for the other components 

of the reduced exposome). A mediation analysis quantified that for copper, the 52 CpGs 

mediated 29% of the total effect of postnatal blood copper level on zBMI, while for PFOS, 

the 12 selected CpGs mediated 28% of the total effect of postnatal blood PFOS level.

3.3. Agnostic exposome-wide approach

An agnostic ExWAS using FDR correction for multiple testing between the whole (not 

reduced) exposome and zBMI identified 20 postnatal exposures significantly associated with 

zBMI (Sensitivity analysis I, Table 4). These included postnatal copper and PFOS level (also 

identified at step d) of the main approach). In addition to metals and perfluorinated alkylated 

substances (PFAS), these exposures belonged to the organochlorines, polybrominated 

diphenyl ethers (PBDE), lifestyle and indoor air pollution families. Organochlorines, PBDE 

and PFAS compounds, as well as postnatal cobalt levels showed negative regression 

coefficients, corresponding to a decreased zBMI with increasing exposure levels. The most 

significant associations were observed for 5 of the postnatal PCB levels, which formed 

a group with higher correlation (mean absolute correlation, 0.50) than the rest of the 

quantitative exposome (mean absolute correlation, 0.11).

3.4. Other sensitivity analyses

In order to determine if our a priori CpGs selection led to a concentration of information, 

we quantified the overrepresentation of our preselected BMI-relevant CpGs among the 

discoveries of a methylome-wide analysis linking the whole methylome to zBMI. As 

expected, the CpGs associated with zBMI in an MWAS considering the whole exposome 

were enriched in enhancers CpGs selected as being relevant for BMI from KEGG database 

(1.22%) compared to the other CpGs (0.46%, a ratio of 2.6 to 1). However, most significant 

associations found by the MWAS were not part of the a priori selected list of CpGs (1760 

out of 1788, Supplementary Material 8).

When the whole Meet-in-the-Middle was repeated without the step of CpGs preselection 

using external biological information (sensitivity analysis III), final results differed 

from those obtained using the restricted methylome: additionally to blood postnatal 

copper and PFOS levels (which were also found significant in this analysis), 

blood postnatal hexachlorobenzene (HCB), Pentabromodiphenyl ether (PBDE) 153 and 

dichlorodiphenyltrichloroethane (DDT) levels (with negative associations with zBMI) and 

blood postnatal caesium level (with a positive association with zBMI) were identified in step 

d) (Table 5). These 5 exposures were also associated with zBMI in the agnostic ExWAS 

approach (sensitivity analysis I). To give more details, 1788 out of 386,518 CpGs were 

associated with zBMI in step b) (Figure 3A and Supplementary Material 9). In step c) of the 

analysis, 28 exposures were significantly associated with at least one of these 1788 CpGs. 

Among them, postnatal blood levels of copper, BPA and PFOS (Supplementary Material 10 

and Figure 3B) and prenatal humidity exposure, which had all been previously found in the 

main analysis, were associated with respectively 110, 449, 180 and 47 CpGs. All the other 

exposures were associated with less than 10 CpGs.
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When we repeated our analysis adding a correction for blood cell-types (sensitivity analysis 

II), no association was significant at step b) (lowest p-value with Benjamini-Hochberg 

correction: 0.72). When we repeated the analysis corrected for blood cell-types without the 

preselection step, we found one association between the whole methylome and zBMI, but 

the corresponding CpG (cg02032125) was not associated with any exposure at step c) so that 

no exposure was eventually selected as associated with BMI.

When we considered the cell-types instead of the methylation data as our intermediate layer, 

(sensitivity analysis IV), results were very similar to those of the main analysis: the reduced 

exposome consisted in three exposures, postnatal blood copper and BPA levels and average 

pregnancy humidity exposure. In the last step, only copper level was associated with zBMI. 

The three cell-types associated with both copper and zBMI mediated 13% of the effect of 

copper on zBMI. Detailed results of sensitivity analysis IV are available in Supplementary 

Material 11.

4. Discussion:

We implemented a modified Meet-in-the-Middle approach among 1,173 mother-child pairs 

to identify components of the exposome influencing child BMI through DNA methylation 

changes. The analysis highlighted postnatal copper blood level as being positively associated 

with zBMI, an association supported by changes with copper levels in the methylation 

levels of 52 CpGs from genes that are relevant for BMI based on a priori knowledge. 

Blood perfluorooctanesulfonic acid postnatal level was also found related to zBMI in our 

Meet-in-the-Middle approach, an association likely due to reverse causality.

Our work is one of the first studying the link of an exposome including both chemical 

and nonchemical stressors during the prenatal and postnatal time windows with child BMI. 

Beside Helix studies, the largest studies considering multiple chemical exposures and child 

BMI considered up to 27 components (Agay-Shay et al., 2015; Fan et al., 2017; Lauritzen et 

al., 2018)).

The efficiency of our Meet-in-the-Middle approach to detect true predictors of zBMI within 

the exposome relies on three main assumptions: 1) that part of the effects of the exposome 

on child BMI are mediated by changes in methylation levels that can be observed from 

peripheral blood; 2) that these methylation changes are strong enough to be detectable and 

that they can be used to select plausible exposures and thus reduce the exposome dimension; 

3) that existing databases of biological pathways and regulatory regions (enhancers) allow to 

relevantly reduce the dimension of the methylome a priori to study its association with BMI. 

We discuss here the relevance of these three assumptions, as well as our choice not to correct 

for cell-types heterogeneity.

4.1. Are some effects of the exposome on child BMI likely to be mediated by the 
methylome?

Methylation has been reported to mediate part of the effect of specific exposures on 

health. This has been suggested for example for smoking effects on health: Fasanelli et 

al. (2015) pointed methylation mediation for smoking effects on lung cancer and Wahl et 
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al. (2018) showed that site-specific methylation can mediate the effect of smoking on the 

expression of inflammatory proteins. For BMI, evidence of mediation arises from animal 

toxicological studies, which showed that long-term obesity risk can result from effects 

of early overfeeding/underfeeding mediated by methylation changes on specific regulatory 

CpG sites in different tissues (Carone et al., 2010; Lillycrop et al., 2008, 2005; Plagemann 

et al., 2009). In humans, studies based on a subjects who experienced famine during 

intra-uterine life suggested that blood cells methylation could mediate effects of prenatal 

undernutrition on later overweight: early-life exposures to famine had an effect on CpGs 

regulating growth and metabolic mechanisms involved in obesity (Heijmans et al., 2008; 

Tobi et al., 2009). In addition, such a mediation between prenatal exposure to famine and 

adult metabolic traits has been statistically demonstrated; indeed, studies (Tobi, Slieker, 

et al., 2018; Tobi et al., 2018) pointed out that even if, from a biological point of view, 

DNA methylation measured in peripheral blood was not likely to be a causal mediator of 

BMI change, it could be a proxy of epigenetic regulation changes in specific tissues, and 

thus allow to detect mediation. For early exposures other than nutrition, little evidence is 

currently available regarding an effect on BMI or growth mediated by epigenetic changes 

(Richmond et al., 2015): however, Cao-Lei et al. (2015) suggested that some gene-specific 

methylation could mediate part of the effect of prenatal maternal stress child BMI and 

central adiposity. Less directly, several exposures were identified as possibly influencing 

epigenetic marks, and some of these alterations may occur on genes involved in signaling 

pathways controlling growth and adipose tissue development (Richmond et al., 2015). 

Importantly, effects in the opposite causal directions are also likely, in that changes in BMI 

could influence methylation levels on specific loci, as suggested by Dekkers et al. (2016) 

and Richmond et al. (2016).

Our approach, as well as the agnostic ExWAS, identified postnatal blood copper level as 

positively associated with zBMI and additionally with changes in BMI-relevant CpGs. The 

mediating effect that we estimated was of 29% of the estimated total copper effect. Copper 

is an essential trace element involved via oxidoreduction reactions in a broad range of 

processes, including energy expenditure, mitochondrial respiration, antioxidant defences and 

inflammation (Tisato et al., 2010). Human copper intake is most often due to presence of 

copper in drinking water, food or vitamin supplement (Brewer, 2010; Pal et al., 2014) and 

is known to influence blood copper level (Silverio Amancio et al., 2003; Uauy et al., 1998). 

Elevated copper concentrations have been observed in many diseases, including cancer, 

Alzheimer and metabolic diseases (Brewer, 2010; Salustri et al., 2010; Squitti et al., 2009; 

Tisato et al., 2010). Specifically, a positive link between copper level and high BMI or 

obesity in children has been previously described in the same data from HELIX (Vrijheid 

et al., submitted, available upon request) and elsewhere (Fan et al., 2017; Lima et al., 2006; 

Yakinci et al., 1997). These studies in children are cross-sectional and an important question 

relates to the direction of any causal link between copper level and obesity. Overweight 

might disrupt copper level, for example due to a higher food intake linked to an increased 

appetite, as hypothesized by Yakinci et al. (1997), or due to metabolic changes. Other 

arguments exist in favour of copper being a proximal cause of overweight. Nutrition studies 

in human showed that changes in copper intake (depletion or supplementation) can have 

adverse health effects such as metabolic and cardiovascular abnormalities (Klevay, 2018; 
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Milne and Weswig, 2018). The toxicity of copper (Brewer, 2010) and its ability to induce 

oxidative stress are well-known in humans (Brewer, 2010; Uriu-Adams and Keen, 2005) 

and from animal models (Galhardi et al., 2004; Pereira et al., 2016). Part of this process 

can occur via methylation changes, as shown in zebrafish, in which stress-related gene 

expression can be modified by early-life copper exposure (Dorts et al., 2016). Although we 

cannot formally exclude a situation in which copper levels are influenced by the child’s 

overweight status (e.g. as in Figure 4D), in particular due to the cross-sectional design of our 

study of DNA methylation-BMI links, the above-mentioned experimental and prospective 

studies make copper a plausible causal biomarker or predictor of BMI, with clues for effects 

possibly mediated by methylation changes (as in Figure 4A).

On the contrary, the negative and less strong association of PFOS level with zBMI may 

correspond to reverse causality (see below). An influence of PFOS levels on blood or serum 

methylation change has some plausibility (Ruiz-Hernandez et al., 2015; Watkins et al., 

2014).

4.2. Can information be borrowed from the blood methylome to reduce the dimension of 
the exposome?

Dimension reduction is one of the possible cures of the curse of dimensionality (Jimenez 

and Landgrebe, 1998). Assuming that part of the effects of the exposome on BMI are 

mediated by the methylome, and that blood methylome constitutes a proxy of methylation 

levels in other target organs, identifying exposures associated with methylation changes on 

CpGs relevant for BMI is a way to restrict the analysis to a subgroup of exposures with 

higher likelihood of having an effect on BMI. If the a priori CpG selection is accurate, one 

can expect the reduced exposome to contain a higher proportion of true predictors of BMI 

than the full exposome. In a situation of expected limited power, testing only the association 

of this reduced exposome with BMI could lead to a better specificity (fewer false positives) 

than an agnostic ExWAS performed on the whole exposome, which may suffer from high 

FDP because of the correlation within the exposome (Agier et al., 2016). This approach 

however comes at the cost of possibly excluding true BMI predictors within the exposome 

whose effect on BMI are not identifiable from the blood methylome. Yet, we considered a 

high FDP to be of greater concern for exposome studies than low sensitivity.

Compared to the classical Meet-in-the-Middle framework (Vineis et al., 2013), we 

additionally adjusted for the outcome when testing for associations between exposures and 

CpGs. This adjustment was meant to exclude some cases of spurious association between 

the exposome and the methylome. Thus, we used this tailored Meet-in-the-Middle approach 

with a different goal than mediators identification, to focus on a subset of the exposome 

relevant for the considered outcome, with the ultimate goal to increase specificity.

We used ExWAS-type methods to identify our reduced exposome, which has a possibly high 

sensitivity and an expected high false positive rate (Agier et al. 2016). This could make 

our reduced exposome possibly inaccurate, containing exposures selected by chance even if 

the test is adapted to the underlying causal structure. However, our reduced exposome was 

considerably smaller than the full exposome (4 exposures vs. 216) and our results provided 

far fewer discoveries (2 vs. 20) than an agnostic ExWAS ignoring the methylome data. This 
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lower number of discoveries is not consistent with our approach having a higher rate of 

spuriously mediated exposures. Rather, it could be explained by our approach having a lower 

FDP and/or a lower sensitivity. To discuss these hypotheses, we compare the plausibility of 

the results of the Meet-in-the-Middle approach and of the agnostic ExWAS obtained in the 

same population.

As discussed before, copper, identified by both approaches, is a plausible causal predictor of 

BMI mediated by methylation. Among the 19 other exposures significantly associated with 

zBMI in the agnostic approach, four associations corresponded to positive slopes: postnatal 

blood caesium level, prenatal maternal active smoking and postnatal indoor particulate 

matter (PM2.5) concentration and absorbance. The last three associations may be (at least 

partly) due to the well-known effect of prenatal and postnatal smoking on the obesity (Oken 

et al., 2008; Vázquez Nava et al., 2006): indeed, postnatal smoking variables were used 

to compute indoor particulate matter levels. An odd ratio greater than 1 was also reported 

for the influence of high urinary caesium levels on diabetes, an obesity-related outcome 

(Menke et al., 2016). The remaining 15 associations corresponded to negative slopes (that 

is, a lower BMI with increasing exposure levels assessed in child blood): it was the case for 

postnatal blood levels of perfluorinated compounds, cobalt and of persistent organochlorine 

compounds (some PCBs, DDT (an insecticide), its metabolite DDE, and HCB). For some 

of these exposures, associations of prenatal levels with overweight or obesity have been 

reported in the literature. PFAS, including PFOS, prenatal exposures have been associated 

with higher BMI in childhood and adulthood (Braun, 2017; Lauritzen et al., 2018; Saikat 

et al., 2013); obesogenic effects of early-life PCBs levels have also been reported (Heindel 

& vom Saal, 2009; Thayer et al., 2012). However, for childhood exposure, several studies 

found negative associations of PCBs (Rönn et al., 2011) and PFAS (Nelson et al., 2010) 

with BMI, similarly to our results. These negative associations may be indicative of reverse 

causality. This is supported by the facts that 1) the postnatal exposome and outcome were 

assessed simultaneously; 2) lipophilic compounds such as PFAS, PCBs and DDT are stored 

in fat, which makes the blood level a possibly inaccurate marker of exposure: studies on 

seals showed that, for identical levels of exposures, higher persistent organic pollutants 

(POP) levels in blood are found in thin compared to fatter animals (Debier et al., 2006, 

Lydersen et al., 2002). In humans, Rönn et al. (2011) found positive associations of fat 

mass with blood levels of lightly chlorinated PCBs with fat mass and negative association 

for highly chlorinated PCBs, which are more lipophilic and therefore more stored in fat. 

This is in favour of the negative associations between POPs (persistent organic pollutants) 

levels and BMI being explained by fat levels influencing the blood POPs levels (causal 

models C to K, Figure 4), rather than by POPs influencing adiposity (causal models A or B). 

Unfortunately, we could not access fat tissue POP concentrations, which may have been a 

better exposure biomarker.

The Meet-in-the-Middle approach did not select PCBs, DDT, DDE, HCB and other POPs 

highlighted by the agnostic ExWAS. This may be due to our approach coping more 

efficiently with reverse causality. A recent simulation study showed that Sobel’s test of 

mediation, under specific hypotheses, has far better detection rates for true mediation effects 

than in a reverse causality situation (Tobi et al., 2018). Our approach, which has similarities 
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to a mediation test, is moreover specifically designed to efficiently handle some situations of 

reverse causality.

Figure 4C to K shows all possible causal situations corresponding to reverse causality 

between an exposure (E) and zBMI. An ExWAS approach, which cannot distinguish 

between E influencing zBMI and zBMI influencing E, is expected to detect all of them 

(assuming perfect power), whereas our Meet-in-the-Middle approach is not expected to 

conclude that E and zBMI are linked in cases C and I. Moreover, since we adjusted 

our second test (the exposome-methylome test) for zBMI, cases G and H, which seem 

very plausible from a biological point of view, should not be erroneously detected by our 

approach either (indeed, there is no exposure-CpG association conditionally on BMI in 

models G and H). Finally, as methylation is not likely to influence exposure levels in another 

way than via its link with the level of fat and as we preselected CpGs in pathways likely 

to link exposures and BMI, cases E, F and K may not be very frequent situations. Case D 

however cannot be excluded and may be erroneously detected by our approach, which may 

be the case for PFOS in our study. We can thus hypothesize that our Meet-in-the-Middle 

approach is likely to (erroneously) identify a link between E and Y in fewer causal models 

corresponding to reverse causation than the ExWAS approach. This may limit the number of 

false-positive findings compared to the agnostic ExWAS.

Regarding now the sensitivity of our approach, it strongly depends on the proportion of 

exposures truly affecting BMI for which one of the underlying mechanisms relates to 

changes in blood DNA methylation. If the effect of most exposures is (at least partly) 

reflected in the blood methylome, then we can expect a high sensitivity, empowered by 

the smaller dimension of the reduced exposome compared to the whole exposome, which 

makes the correction for multiple testing less penalizing than in the agnostic ExWAS. If on 

the contrary most exposures affecting BMI do so by pathways unrelated to the methylome, 

then our approach is expected to have a low sensitivity. We did not find any association 

with prenatal exposures to endocrine disruptors (some of which are possible obesogens 

(Braun, 2017)) or with dietary factors such as soda intake, whose effects on BMI are well 

documented (Heo et al., 2017; Hu and Malik, 2010; Murakami and Livingstone, 2016) 

but may not be visible from the blood methylome. Overall, the sensitivity of our approach 

will depend on the (unknown) proportion of exposures whose effect is mediated by the 

methylome. Whether the likely lower sensitivity is considered to be compensated by the 

expected decrease in FDP would depend on the specific nature of the exposome study, with 

e.g. confirmatory studies putting the emphasis on the limitation of false positive signals.

4.3. Is a preliminary dimension reduction of the methylome necessary to efficiently 
borrow information from it?

We tried to identify a relevantly reduced exposome with ExWAS-type methods applied 

to methylome data. ExWAS is known to have a high-false positive rate, particularly 

if correlation exists among predictors (Agier et al. 2016). To cope with this problem, 

we modified the original Meet-in-the-Middle framework by testing the exposome-CpGs 

associations only for CpGs which we had found to be associated with zBMI. This drastically 

reduced the number of tests done at step c) (10,152 tests versus 83,487,888, a division by 
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8200) and thus increased power for this step. Moreover, we also performed a preliminary 

reduction of the size of the methylome, relying on external biological information from 

the KEGG pathways database (Tanabe and Kanehisa, 2012). Our preselection of CpGs 

was, again, drastic, as it reduced the methylome from 386,518 to 2284 CpGs, possibly 

allowing a gain of power to test associations between methylation levels and zBMI, under 

strong assumptions. These assumptions relate to the quality and completeness of the KEGG 

database (and of our query) to identify BMI-relevant genes and to the quality of the 

ILLUMINA annotation about enhancers CpGs and on the link between genes and CpGs. 

These can be questioned: in particular the KEGG database is based on publications of 

various quality, and pathways selected may not be relevant for 6–10-year-old children. 

Moreover, ILLUMINA annotation is not tissue-specific whereas enhancer characteristic is; it 

is consequently unclear whether the ILLUMINA enhancer tag is relevant for blood immune 

cells, on which methylation was assessed. Finally, changes in the methylation level of the 

enhancer CpGs of one gene may not be linked with the protein level of this same gene, but 

of a remote gene (Jang et al., 2017).

To try to quantify the impact of our CpGs preselection, we used two approaches. First, we 

performed a sensitivity analysis, in which the Meet-in-the-Middle approach was performed 

without step a) of CpGs preselection. This led to quite different results. Although, in the last 

step, postnatal levels of copper and PFOS were again found to be associated with zBMI, 4 

other exposures were additionally significantly negatively associated with zBMI: postnatal 

blood levels of HCB, PBDE 153, DDT and caesium. Contrarily to copper and PFOS levels, 

which were associated with respectively 1110 and 180 CpGs at step c), these four additional 

exposures were each associated with not more than 2 CpGs. Moreover, as discussed above, 

for the organochlorine compounds, their association with BMI may be due to reverse 

causality. Thus, the discoveries of this analysis without CpGs preselection contained more 

compounds little likely to be causative predictors of the zBMI than the discoveries of the 

main analysis. This might be explained by the high number of false positives expected from 

an ExWAS-type method in high dimension, at steps b) and c). The dimension reduction of 

the methylome in our case seemed to help to cope with this problem. Further studies are 

needed to determine if this impact of CpGs preselection is generally expected or not.

To further test the quality of our a priori CpGs preselection, we tried to establish if 

our a priori reduction led or not to concentration of information, by quantifying the 

overrepresentation of our preselected CpGs in the significant associations found by a 

methylome-wide analysis relating the whole methylome to zBMI. The information was 

indeed concentrated (apparently higher specificity of the selected CpGs), but at the cost 

of a considerable loss of information: giving up at least 1760 CpGs associated with 

zBMI implies a risk not to identify some exposures truly associated with CpGs which 

are themselves associated with zBMI, and consequently may decrease the sensitivity of 

our approach (Supplementary Material 8). This illustrates, again, that our approach, which 

was built to gain in specificity, may in principle have a cost in terms of loss in sensitivity 

compared to the agnostic approach.
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4.4. Correction for cell-type heterogeneity

Correction for the proportion of the cell-types in which DNA methylation is assessed is 

now applied in most methylome studies, although its relevance is debated (Holbrook et al., 

2017). Between-subject differences in DNA methylation may or may not depend on cellular 

heterogeneity. Generally, it is assumed that differences in DNA methylation not due to 

cell-types mixture are more likely to be causative of disease, while methylation differences 

caused by differences in cell-types proportion are considered a likely consequence of disease 

or at least of the disease process (i.e. to correspond to reverse causality, for example in the 

case of obesity-induced inflammation leading to changes in leukocytes proportion (Zeyda 

and Stulnig, 2009)), or to be a confounder whose effect needs to be controlled for. However, 

diseases are also often associated with the distribution of cell types, and cell type proportion 

can also in some situations be a cause of disease or a marker for e.g. inflammatory or 

immune-related diseases (Holbrook et al., 2017). This is particularly relevant for obesity 

development, which is known to involve inflammatory pathways (Hotamisligil, 2003). The 

differential methylation driven by cell-type heterogeneity could therefore mediate exposure 

effects rather than be a consequence of the overweight. Thus, cell types proportion could 

be 1) a consequence or very close marker of our outcome; in such case, adjusting for it 

in the model linking methylation and zBMI is irrelevant, as adjustment for consequences 

of the diseases, which are by definition not confounders, could have harmful consequences 

(Barton et al., 2019); 2) a cause of the health outcome. In this case, if (option 2a) it is a 

mediator of an effect of an exposure on zBMI or a proxy of such a mediator, we should 

not adjust for it: as we want to identify exposures whose effect on zBMI is biologically 

mediated by the methylome layer, correcting for cell-types could prevent us from selecting 

potential exposures of interest associated with zBMI and whose effect is mediated by cell-

type-dependent methylation. If (2b) it is not a mediator, i.e. if it is a cause of outcome but 

not a consequence of exposure, it is a potential confounder and as such should be corrected 

for in the test of association between methylation and zBMI. We chose not to adjust the 

DNA methylation-BMI model of the main analysis for cell-type heterogeneity because we a 

priori consider hypotheses 1) and 2a) as more likely than 2b), and because the consequence 

of erroneously adjusting may, in our study in which identifying the intermediate causal 

factors was not the main aim, be more harmful (Barton et al., 2019) than adjusting.

In our sensitivity analysis IV, we repeated the whole Meet-in-the-Middle design considering 

the cell-types instead of the methylation data as the intermediate layer. Final results were 

very similar to those of the main analysis, making it possible that differential methylation 

driven by cell-type heterogeneity explained the association between methylome layer and 

both copper and zBMI, and which therefore mediate copper effects (case 2a). However, 

the reduced exposome was slightly smaller when considering cell-types and the proportion 

mediated was lower (13% vs. 29%). This may mean that the cell-type did not convey as 

much information on the biological effect of exposures than DNA methylation on the path 

between selected exposures and zBMI.

We acknowledge several limitations to this original work; first, our results are dependent 

on the quality of a priori information; second, the methylome and the outcome (and a part 

of the exposome) were assessed simultaneously, a design which makes difficult to exclude 
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reverse causation with an agnostic test of association. Measurement error is also expected 

for both the methylome and the exposome; finally, only monotonous associations were 

tested to limit the number of tests. The strengths of our study include a multilayer analysis 

of the exposome, methylome and BMI in a large and well-characterized population, the 

consideration of multiple testing in the composite tests and of a priori information on the 

methylome-BMI relation to restrict the number of tests done. This composite design may 

allow improving the specificity of exposome-health studies and limit associations due to 

reverse causality, with a possible cost on sensitivity.

Conclusion

This work is to our knowledge the first epidemiological study relying on an intermediate 

blood methylome layer to try to better characterize the exposome-health association. Purely 

agnostic exposome studies are expected to suffer from a high false positives rate, and 

possibly a low sensitivity (due to the correlation within the exposome) (Agier et al. 2016). 

Our approach may allow reducing the false positive rate by using a modified Meet-in-the-

Middle design that permits a biologically driven reduction of the exposome, which may 

in particular allow discarding some of the associations of the outcome with the exposome 

due to reverse causality. It comes at a cost of being insensitive to exposures acting on 

the outcome via pathways not causing changes in the methylome of peripheral blood. 

Extensions of this approach to other biologically relevant layers might allow avoiding this 

limitation in the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations used:

BMI Body Mass Index

BPA bisphenol A

DDE 4,4′dichlorodiphenyl dichloroethylene

DDT 4,4′ dichlorodiphenyltrichloroethane

DNA Deoxyribonucleic acid

EDTA Ethylenediaminetetraacetic acid

ExWAS Exposome-Wide Association Study

FDP False Discovery Proportion

FDR False Discovery Rate

HCB hexachlorobenzene

MWAS Methylome-Wide Association Study

PBDE polybrominated diphenyl ether

PCB polychlorinated biphenyl

PFNA perfluorononanoate

PFOA perfluorooctanoate

PFOS perfluorooctane sulfonate

PFUNDA perfluoroundecanoate

PM Particulate Matter

POP persistent organic pollutants

zBMI z-score of Body Mass Index
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Highlights:

• Exposome studies are promising tools to identify hazardous exposures.

• Agnostic exposome studies may suffer from low statistical power and low 

specificity.

• Information from DNA methylation could be used to relevantly reduce 

exposome dimension and thus gain efficiency.

• A Meet-in-the-Middle approach using methylation data was used to relate the 

exposome with BMI.

• Postnatal blood copper and PFOS levels were associated with child BMI 

(respectively positively and negatively).

• An ExWAS ignoring methylation data identified more significant 

associations, many of which possibly due to reverse causality.
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Figure 1: 
Workflow of the main statistical analyses. (in color; 1-column fitting image)
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Figure 2: 
Manhattan plots of the FDR corrected p-values of adjusted associations obtained with the 

Meet-in-the-middle approach applied on the reduced methylome at steps b) and c). A: 
Associations between preselected CpG and zBMI. Each colour corresponds to a gene. 

The black vertical line shows the (FDR-corrected) 0.05 significance level. Lowest p-value: 

3.20×10−3. B. Associations between exposures and CpGs associated with childhood zBMI. 

Each color corresponds to a different exposure. The black vertical line shows the (FDR-

corrected) 0.05 significance level. Lowest p-value: 5.66×10−7. BPA: Bisphenol A; PFOS: 

Perfluorooctanesulfonic acid. (in color; 2-column fitting image)

Cadiou et al. Page 28

Environ Int. Author manuscript; available in PMC 2021 December 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Sensitivity analysis III - Meet-in-the-Middle approach without a priori preselection of CpGs: 

Manhattan plots of the FDR corrected p-values of adjusted associations obtained with 

the Meet-in-the-middle approach applied on the reduced methylome at steps b and c. A: 

Associations between all CpG and zBMI. Each colour corresponds to genes. The black 

line is the (FDR-corrected) 0.05 significance threshold. Lowest p-value: 2.04×10−4. B. 
Associations between exposures and CpGs associated with childhood zBMI. Each colour 

corresponds to a different exposure. Lowest p-value: 4.51 ×10−6. (in color; 2-column fitting 

image)
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Figure 4: 
Different causal models involving one exposure, one CpG site and the outcome (BMI). 

Among the causal models corresponding to the exposure-BMI link corresponding to reverse 

causality (C to K), the models in which the Meet-in-the-Middle approach is expected to be 

able to provide a truly negative result are displayed in green, and causal models in which our 

Meet-in-the-Middle approach can be expected to provide a false-positive result are displayed 

in red. (in color; 1.5-column fitting image)
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Table 2:

Number of CpGs associated with both exposures and ZBMI in the adjusted associations between the 

exposome and CpGs associated with zBMI in 1,173 children from the HELIX cohort (ExWAS model adjusted 

on zBMI, step c) of the Meet-in-the-Middle approach applied on the reduced methylome). Results are 

presented only for exposures associated with a (stringently corrected for multiple hypothesis testing) p-value 

of less than 0.05 in exposure-CpGs ExWAS, with CpGs being previously selected in a CpGs-zBMI ExWAS.

Exposure Number of CpGs associated both with the 
exposure and zBMI

Number of corresponding genes*

Copper (postnatal) 52 37

Bisphenol A (BPA) (postnatal) 15 14

Perfluorooctanesulfonic acid (PFOS) (postnatal) 12 12

Humidity average (pregnancy) 1 1

*
Details of the CpGs and genes are given in Supplementary Material 6.
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Table 3:

Adjusted associations between the reduced exposome and zBMI in 1,173 children from HELIX cohort 

(ExWAS model, step d) of the Meet-in-the-Middle approach applied to the reduced methylome). “Significant” 

associations are indicated in bold.

Group Label Unit Transformation Effect 
estimate*

95% CI Uncor-rected 
p-Value

FDR-
corrected p –

Value

Meteorological Humidity 
(pregnancy)

% None 0.05 −0.34; 0.44 0.81 0.81

Phenols BPA (postnatal) μg/g Log2 −0.07 −0.14; 
2.8x10−4

0.05 0.07

Metals Copper 
(postnatal)

μg/L Log2 0.22 0.14; 0.30 3.57x10−7 1.43x10−6

Perfluorinated 
alkylated 
substances (PFAS)

PFOS 
(postnatal)

μg/L Log2 −0.13 −0.23; −0.04 7.69x10 −3 0.02
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Table 4:

Sensitivity analysis I: adjusted associations between the whole exposome and zBMI in 1,173 children from the 

HELIX cohort (ExWAS agnostic approach, ignoring the methylome). Results are presented only for exposures 

with a (FDR-corrected for multiple hypothesis testing) p-value lower than 0.05.

Exposure group Exposure variable Unit Transfor-
mation

Effect 
estimate*

95%CI Uncorrected
p -value

FDR-
corrected
p –value

Organochlorines PCB 180 - Postnatal ng/g lipids Log2 −0.92 −1.05 −0.78 2.14x10−38 4.62x10−36

Organochlorines HCB - Postnatal ng/g lipids Log2 −0.66 −0.76 −0.57 5.08x10−38 5.48x10−36

Organochlorines PCB 170 - Postnatal ng/g lipids Log2 −0.82 −0.95 −0.70 9.56x10−37 6.88x10−35

Organochlorines Sum of PCBs - 
Postnatal ng/g lipids Log2 −0.80 −0.92 −0.67 7.15x10−34 3.86x10−32

Organochlorines PCB 138 - Postnatal ng/g lipids Log2 −0.67 −0.78 −0.55 5.56x10−28 2.40x10−26

Organochlorines PCB 153 - Postnatal ng/g lipids Log2 −0.70 −0.82 −0.58 1.29x10−27 4.66x10−26

Organochlorines DDE - Postnatal ng/g lipids Log2 −0.54 −0.64 −0.43 3.42x10−22 1.06x10−20

Polybrominated 
diphenyl ethers

PBDE 153 - 
Postnatal ng/g lipids Log2 −0.40 −0.52 −0.28 8.70x10−11 2.35x10−9

Organochlorines PCB 118 - Postnatal ng/g lipids Log2 −0.28 −0.38 −0.19 1.39x10−9 3.33x10−8

Metals Copper - Postnatal μg/L Log2 0.21 0.13 0.30 5.67x10−7 1.11x10−5

Perfluorinated 
alkylated substances PFOA - Postnatal μg/L Log2 −0.24 −0.33 −0.15 5.29x10−7 1.11x10−5

Organochlorines DDT - Postnatal ng/g lipids Log2 −0.27 −0.38 −0.16 1.11x10−6 2.01x10−5

Perfluorinated 
alkylated substances PFNA - Postnatal μg/L Log2 −0.19 −0.28 −0.10 3.65x10−5 6.07x10−4

Perfluorinated 
alkylated substances

PFUNDA - 
Postnatal μg/L Log2 −0.21 −0.32 −0.09 4.06x10−4 6.27x10−3

Metals Cesium - Postnatal μg/L Log2 0.20 0.09 0.31 4.89x10−4 7.04x10−3

Metals Cobalt - Postnatal μg/L Log2 −0.12 −0.19 −0.05 7.52x10−4 0.01

Tobacco Smoke Active smoking - 
Pregnancy - - 0.34 0.13 0.55 1.45x10−3 0.02

Indoor air
Indoor PM 
absorbance - 
Postnatal

10−5 m−1 Log 0.13 0.04 0.21 2.95x10−3 0.03

Indoor air
Indoor PM2.5 - 
Postnatal μg / m3 Log 0.11 0.04 0.19 2.94x10−3 0.03

Perfluorinated 
alkylated substances PFOS - Postnatal μg/L Log2 −0.14 −0.24 −0.04 4.59x10−3 0.05
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Table 5:

Sensitivity analysis III - Meet-in-the-Middle without CpGs preselection based on KEGG database: adjusted 

association between the reduced exposome and zBMI in 1,173 children from the HELIX cohort (ExWAS 

model, step d) of the Meet-in-the-Middle approach applied on the reduced methylome). Bold lines indicate 

significant associations.

Exposure group Exposure variable Unit Transfor-
mation

Effect 
estimate*

95%CI Unadjusted 
p-value

FDR 
adjusted p –

value

Organochlorines HCB - Postnatal ng/g lipids Log2 −0.66 −0.76; −0.56 7.87x10−38 2.20x10−36

Polybrominated 
diphenyl ethers

PBDE 153 - 
Postnatal

ng/g lipids Log2 −0.40 −0.52; −0.28 1.62x10−10 2.26x10−9

Metals Copper - Postnatal μg/L Log2 0.22 0.14; 0.30 3.57x10−7 3.33x10−6

Organochlorines DDT - Postnatal ng/g lipids Log2 −0.28 −0.39; −0.17 6.06x10−7 4.24x10−6

Metals Caesium - 
Postnatal

μg/L Log2 0.19 0.08; 0.30 8.50x10−4 4.76x10−3

Perfluorinated 
alkylated 
substances

PFOS - Postnatal μg/L Log2 −0.13 −0.23; −0.04 7.69x10−3 0.04

Phenols BPA - Postnatal μg/g Log2 −0.07 −0.14; 
2.83x10−4

0.05 0.20

Phthalates OH-MiNP - 
Pregnancy

μg/g Log2 −0.07 −0.14; 
4.04x10−3

0.06 0.23

Phthalates MEHP - Postnatal μg/g Log2 −0.07 −0.16; 0.01 0.10 0.31

Perfluorinated 
alkylated substances

PFHXS - Postnatal μg/L Log2 −0.10 −0.22; 0.02 0.12 0.33

Built Environment Population density - 
Postnatal

people / 
km2

Square root 0.06 −0.02; 0.15 0.15 0.38

Lifestyle Soda intake - 
Postnatal

Times/week Tertiles −0.10 −0.26; 0.05 0.18 0.42

Socio-eco capital Social participation 
- Postnatal

- None −0.08 −0.24; 0.07 0.28 0.60

Lifestyle Fastfood intake - 
Pregnancy

Times/week Tertiles 0.13 −0.14; 0.39 0.34 0.66

Phthalates MiBP - Postnatal μg/g Log2 −0.05 −0.16; 0.06 0.35 0.66

Phthalates MBzP - Postnatal μg/g Log2 −0.03 −0.11; 0.04 0.40 0.70

Organochlorines PCB 138 - 
Pregnancy

ng/g lipids Log2 −0.05 −0.18; 0.08 0.48 0.78

Organochlorines Sum of PCBs - 
Pregnancy

ng/g lipids Log2 −0.05 −0.20; 0.11 0.55 0.80

Air Pollution PM2.5 - Pregnancy μg / m3 None −0.04 −0.17; 0.10 0.57 0.80

Noise Traffic noise (24h) - 
Postnatal

dB(A) None −0.06 −0.26; 0.13 0.54 0.80

Meteorological Humidity - 
Pregnancy

% None 0.05 −0.34; 0.44 0.81 0.85

Organochlorines PCB 170 - 
Pregnancy

ng/g lipids Log2 −0.03 −0.16; 0.10 0.69 0.85

OP Pesticides DETP - Pregnancy μg/g Log2 0.02 −0.09; 0.12 0.77 0.85

Lifestyle Vegetables intake - 
Pregnancy

Times/week Tertiles −0.02 −0.18; 0.15 0.85 0.85
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Exposure group Exposure variable Unit Transfor-
mation

Effect 
estimate*

95%CI Unadjusted 
p-value

FDR 
adjusted p –

value

Natural Spaces Green spaces (300 
m) - Pregnancy

- None −0.02 −0.17; 0.14 0.84 0.85

Phenols PRPA - Pregnancy μg/g Log2 0.01 −0.09; 0.12 0.82 0.85

Metals Thallium - Postnatal None −0.04 −0.29; 0.21 0.78 0.85

Lifestyle Yogurt intake - 
Postnatal

Times/week Tertiles 0.04 −0.14; 0.21 0.69 0.85
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