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     Brown adipose tissue is a thermogenic machine 
 Brown adipose tissue (BAT) is a special class of adipose tissue 
responsible for energy and dissipation, being the most important 
organ for non-shivering thermogenesis (NST) (1 – 10). Mor-
phologically, BAT is clearly distinguishable from white adipose 
tissue (WAT). In particular, brown adipocytes show polygonal 
shape with multilocular lipid droplets, many large mitochondria, 
and are richly innervated by sympathetic nerve eff erent fi bers 
(2,5,8,11,12), which ensure central control of thermogenesis. 
WAT, on the other hand, is the primary fat storage organ in the 

body and consists of unilocular adipocytes with a large lipid 
droplet for storage of excess calories when energy intake exceeds 
energy expenditure. Moreover, BAT is highly vascularized to 
allow the dissipation of generated heat (13), whereas WAT has 
evolutionarily enabled animals to survive for longer periods with-
out meals, storing energy, mainly as triglycerides, and releasing 
fatty acids during fasting periods. Despite some initial controver-
sies it is now accepted that brown adipocytes have a developmen-
tal origin that largely diff ers from that of the white adipocytes, as 
shown by the fi nding that even before diff erentiation brown and 
white fat cells express diff erent genes (14 – 16). 

 Recently, evidence for a second type of brown adipocyte has 
been reported in both rodents and humans. It was found that 
brown fat cells may appear aft er thermogenic stimuli at anatomi-
cal sites corresponding to WAT. Th ese beige or brite (brown in 
white) adipocytes derive from precursor cells diff erent from 
those in classical BAT and are closer to the white adipocyte ’ s cell 
lineage (17 – 21). Despite the fact that the cell origin and anato-
mical placement are diff erent from BAT, this new lineage has 
all the morphological and molecular characteristics of classical 
brown adipocytes present in BAT depots and acts as true ther-
mogenic brown adipocytes (15,22,23). However, the thermogenic 
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   Key messages   

 Brown adipose tissue-induced thermogenesis is  •
regulated by the central nervous system. 
 Understanding the regulation of brown adipose tissue by  •
the brain could provide new targets for the treatment of 
obesity and related metabolic disorders. 

 Brown adipose tissue (BAT) is a specialized organ responsible for 
thermogenesis, a process required for maintaining body tempera-
ture. BAT is regulated by the sympathetic nervous system (SNS), 
which activates lipolysis and mitochondrial uncoupling in brown 
adipocytes. For many years, BAT was considered to be important 
only in small mammals and newborn humans, but recent data have 
shown that BAT is also functional in adult humans. On the basis of 
this evidence, extensive research has been focused on BAT func-
tion, where new molecules, such as irisin and bone morphogenetic 
proteins, particularly BMP7 and BMP8B, as well as novel central 
factors and new regulatory mechanisms, such as orexins and the 
canonical ventomedial nucleus of the hypothalamus (VMH) AMP-
activated protein kinase (AMPK) – SNS – BAT axis, have been discov-
ered and emerged as potential drug targets to combat obesity. In this 
review we provide an overview of the complex central regulation of 
BAT and how diff erent neuronal cell populations co-ordinately work 
to maintain energy homeostasis.   

 Key words :  AMPK  ,    β -adrenoreceptors  ,   brown adipose tissue (BAT)  , 
  hypothalamus  ,   obesity  ,   orexins  ,   sympathetic nervous system (SNS)  , 
  thermogenesis  ,   thyroid hormone  ,  uncoupling protein 1 (UCP1)
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capacity of beige/brite cells  in vivo  is much lower compared to 
brown adipocytes (23 – 26).   

 Thermogenic processes in brown adipocytes 
 Since the 1970s, BAT has been recognized as the main NST 
organ. Th ermogenesis is facilitated via uncoupling of mitochon-
drial respiration from ATP production, mediated by uncoupling 
protein 1 (UCP1), also called thermogenin, which is located in 
the inner mitochondrial membrane (2,5,12,27). Using electron 
transport from the oxidation of fatty acids as substrate, UCP1 
allows the free movement of protons back across the mitochon-
drial membrane, avoiding ATP synthesis and instead dissipating 
the excess of energy as heat (Figure 1) (2,5,28 – 31). Th e ther-
mogenic potency of this mechanism is considerable, and fully 
activated BAT in humans has been appraised to contribute to 
5% of the basal metabolic rate (32). By scaling up energetic 
values obtained in rodents, this eff ect is theoretically estimated 
to have the potential to increase daily energy expenditure by up 
to 20% (33). 

 BAT function is controlled by both the central and the peri-
pheral  nervous system. Th e sympathetic nervous system (SNS) is 
essential to activate BAT thermogenesis. An increase in the 
fi ring rate of the sympathetic nerves subserving BAT leads to 
norepinephrine release at the nerve terminal and activation of 
the  β -adrenergic receptors ( β -ARs, which are G protein coupled 
receptors) expressed in the brown adipocytes, mainly the  β  3  
subtype ( β 3-AR). Upon receptor stimulation, associated protein 
Gs activates adenylate cyclase (AC), increasing cAMP, which in 
turn activates protein kinase A (PKA), inducing thermogenesis 
and downstream activation of p38 mitogen-activated protein 

kinase (MAPK) (2,34). PKA has both acute and chronic eff ects 
on BAT. Th e acute response of PKA increases lipolysis leading to 
elevated cytosolic free fatty acid (FFA) level. Th is process occurs 
by activation of adipose triglyceride lipase (ATGL), hormone-
sensitive lipase (HSL; the activated form being pHSL), and 
monoacylglycerol lipase (MGL), the three of them sequentially 
hydrolyzing triglycerides to release FFAs. Carnitine palmitoyltrans-
ferase 1a (CPT1a) introduces FFA-CoA into the mitochondria, 
where FA oxidation leads to the formation of NADH and FADH, 
which are then further oxidized in the electron transport chain 
(Figure 1) (2,5,35 – 38). Purine nucleotides such as GDP and ADPN 
are bonded to UCP1 in resting conditions, inhibiting it; how-
ever, FFAs, which directly activate UCP1, displace the inhibitory 
nucleotides, increasing UCP1 activity within seconds (2). In addi-
tion to acute eff ects, prolonged stimulation of BAT for hours and 
days will result in increased amounts of UCP1 protein, mitochon-
drial biogenesis, and both hyperplasia and hypertrophy of BAT 
(1,2,5,39). Th us, although the total energy balance depends on 
many factors (food intake, energy expenditure, BAT thermogen-
esis, etc.), stimulation of BAT can have an impact on long-term 
energy balance and hence body weight. BAT not only increases 
energy expenditure, but also leads to plasma triglyceride clear-
ance (40) and improved glucose homeostasis (41,42) through its 
ability in uptake and disposal of large quantities of lipid and glu-
cose from the circulation for use as substrates for thermogenesis 
(2,40,43). On this basis, brown fat has emerged as a target to com-
bat obesity and related metabolic disorders (6,8,33). Th is concept 
is of relevance because it is known that increased BAT function 
is a physiological counter-regulatory mechanism in high-fat diet 
(HFD)-induced obesity, eliciting recruitment of BAT, including 
increased UCP1 expression levels (44). However, using BAT as a 

  Figure 1.     Brown adipose tissue uncoupling and thermogenesis. In brown adipose tissue (BAT), sympathetic stimulation releases norepinephrine (NE) 
activating  β  3 -adrenoreceptors ( β 3-AR) in brown adipocytes coupled to G-proteins, which activates adenylate cyclase (AC), turning AMP into cAMP that 
in turn activates protein kinase A (PKA). PKA induces lipolysis activating adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL; the active 
isoform being pHSL), and monoacylglycerol lipase (MGL) which hydrolyzes triglycerides, diacylglycerol, and monoacylglycerol, respectively, releasing 
free fatty acids (FFAs). FFAs are then imported into the mitochondria through carnitine palmitoyltransferase 1a (CPT1a), where they are oxidized (via  β -
oxidation and further citric acid cycle), leading to the formation of NADH and FADH, which are then oxidized by the electron transport chain. Th is results 
in pumping protons out of the mitochondrial matrix and the creation of a proton-motive force that drives the protons back into the mitochondrial matrix 
through uncoupling protein 1 (UCP1). Th e energy stored in the proton-motive force is then released, starting mitochondrial heat production. Furthermore, 
PKA activation increases UCP1 expression via mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK)1/2 pathway 
responsible for gene transcription, cell growth, cell diff erentiation and protein synthesis.  
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target organ for drugs should be approached with care, since re-
cent evidence has demonstrated that increased BAT activity may 
have harmful side eff ects. A recent report has demonstrated that 
atherosclerotic plaque growth was accelerated by cold-induced 
BAT thermogenesis, indirectly caused by the associated increase 
in lipolysis. Of note, UCP1 knockout mice were protected from 
that eff ect, suggesting that activation of UCP1 function may 
account for low-temperature-associated cardiovascular risks (45).   

 Novel fi ndings about BAT in adult humans 
 For a long time, BAT was considered as a tissue relevant only to 
rodents, hibernating mammals, and newborn humans (1 – 3,5). 
However, current evidence demonstrates that BAT is also present 
in adult humans. Using diff erent approaches, including positron 
emission tomography (PET) studies alongside  18 fl uorodeoxyg-
lucose ( 18 FDG) uptake, BAT is found in defi ned, but dispersed, 
areas in the body of adult humans, distributed mainly in the cervi-
cal, supraclavicular, perirenal, intercostal, and periaortic regions 
(3,12,46 – 48). Despite the initial enthusiasm following the identi-
fi cation of BAT in adult humans, two recent publications have re-
ported some unexpected results regarding BAT in people. Indeed, 
human adipose tissue biopsies from the supraclavicular area have 
unexpectedly found that the expression profi le of some biomark-
ers was closer to that of beige/brite cells than of that brown cells 
(18,19), suggesting that human BAT may be composed of mainly 
beige/brite adipocytes. Th e process in which precursor cells placed 
in WAT become beige/brite cells instead of white adipocytes is 
called  ‘ browning ’ , and will be explained in the next section.   

 Beige/brite adipose tissue: a new thermogenic 
organ? 
 As mentioned above, there is evidence that beige/brite adipo-
cytes exist in rodents and humans (17 – 22,49). According to that 
concept, browning consists of beige/brite adipocytes emerging in 
white fat depots by cold stimulation. Th ese new cells come from a 
completely diff erent lineage than the myogenic (Myf5 � ) lineage, 
as classical brown adipocytes do (15), but they still exhibit the 
same properties as BAT with respect to UCP1-mediated thermo-
genesis in response to cold. In fact, specifi c molecular markers of 
beige fat cells, rather than those of the classical brown fat cells, are 
enriched in the human UCP1-positive tissues, being brown-like 
adipocytes located in WAT depots but exhibiting the properties 
of classic brown adipocytes upon cold stimulation (19,22). Recent 
data demonstrate that both cold exposure and  β  3 -adrenoreceptor 
agonists induce the production of beige/brite cells (20,23,50 – 52). 
Based on the above fi ndings, activation of thermogenesis through 
stimulation of beige/brite adipocytes in WAT might be a new way 
to increase energy expenditure. Th us, these beige/brite adipo-
cytes represent a new cell type with therapeutic potential against 
obesity and related metabolic disease (6,8,53).   

 Molecular determinants of browning  

 PPAR γ , PGC1 α , PRDM16, and RIP140 
 Th e fi rst indispensable factor for browning is peroxisome pro-
liferator-activated receptor  γ  (PPAR γ ), an essential transcription 
factor for diff erentiation and survival of both brown and white 
adipocytes (22,54 – 57). PPAR γ  activation also promotes the 
formation of brown adipocyte-like cells, inducing the expres-
sion of UCP1, proliferator-activated receptor-gamma coactivator 
1 alpha (PGC1 α ), and other genes related to mitochondrial 

biogenesis, as well as those implicated in the repression of WAT 
genes (57). Recently, it has been demonstrated that PPAR γ  
induction of brown fat genes in subcutaneous WAT is medi-
ated by activation of PRDM16 (PR domain containing 16) (57), 
a process that is mediated by deacetylation of PPAR γ  by sirtuin 
1 (SIRT1) (58). PRDM16 is the second determinant factor to 
promote brown adipogenesis in WAT (15,59,60). Th e adipo-
genic actions of PPAR γ  are not restricted to BAT. It is well known 
that PPAR γ  is critically required for white adipogenesis, PPAR γ 2 
(instead of PPAR γ 1) being the more potent adipogenic isoform 
 in vivo  (61 – 65). Th e specifi c mechanism by which PPAR γ  
activation drives brown or white adipocytes depends on specifi c 
transcription factors. In fact, mesenchymal stem cells give rise to 
precursor cells of bone, muscle, and fat under appropriate con-
ditions. PPAR γ  �  CD24    �    white adipocyte precursor cells reside 
in mural cell compartments of the adipose vasculature. White 
adipocyte diff erentiation is driven by the transcription fac-
tors PPAR γ  and C/EBPs (CCAAT-enhancer-binding proteins), 
specially C/EBP α , giving rise to triglyceride-storing WAT. 
Th is proliferating WAT precursor cell population constantly 
reconstitutes WAT depots throughout adult life and can react to 
increased demand for energy storage with increased diff erentia-
tion. Brown fat cells share precursors (Myf5 � ) with muscle cells 
but not with white adipocytes. Induction of PRDM16 expres-
sion in Myf5    �    cells directs them to develop into brown fat cells 
(15,66). In the absence of PRDM16, these precursor cells will 
develop into muscle cells under the infl uence of the transcription 
factors myogenin and MyoD (myogenic diff erentiation protein) 
(15,66,67). 

 PGC1 α  is increased by cold exposure (68), and controls mi-
tochondrial biogenesis and nuclear respiratory factors, making it 
indispensable for proper thermogenesis but not for BAT diff eren-
tiation (56,68,69). PRDM16, similarly to PPAR γ , is involved in the 
regulation of both BAT and WAT genes (70 – 72). PRDM16 is able 
to interact with PGC1 and CtBPs (C-terminal-binding proteins) 
to activate brown fat genes and suppress white fat genes, respec-
tively (73). Genetic overexpression of PRDM16 increases energy 
expenditure and improves glucose tolerance in HFD mice through 
augmented brown-like adipocytes in WAT, while depletion of 
PRDM16  in vitro  has been shown to decrease UCP1 expression 
(74). Stimulation of BAT-specifi c genes by PRDM16 requires asso-
ciation with PGC1 α  and PGC1 β  (66), which are the third activa-
tors of browning as well as coactivators of PPAR γ  (18,57). 

 RIP140 (receptor-interacting protein 140) is a nuclear receptor 
co-regulator highly expressed in metabolic and reproductive tis-
sues (75). Its overexpression inhibits genes involved in mitochon-
drial biogenesis and oxidative metabolism (76 – 78). By contrast, 
deletion of RIP140 increases brown-like adipocytes in WAT (76). 
RIP140-null mice have a 70% reduction in total body fat mass and 
have higher oxygen consumption when fed a HFD; these mice are 
resistant to obesity and have elevated expression of UCP1 in WAT 
(76,79). In brown adipocytes, RIP140 suppresses UCP1 by an-
tagonizing the binding of PPAR γ /PGC1 α  to the UCP1 promoter 
(80,81). Consistently, its overexpression inhibits genes involved in 
mitochondrial biogenesis and oxidative metabolism (76 – 78).   

 Irisin: role of exercise 
 In 2012, Bostr ö m and colleagues identifi ed irisin, a muscle tissue-
secreted peptide, proposing a possible mechanism by which 
exercise increases BAT activity (82). During exercise, PGC1 α  is 
induced in the muscle of rodents and humans (83,84). As a con-
sequence, fi bronectin type III domain containing (FNDC5) is re-
leased and further cleaved to irisin. Th is active form of the protein 
can act on diff erent tissues, among them BAT, where it increases 
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activity is increased, plasma levels of NPs were elevated (111). Th e 
physiological signifi cance of these data is intriguing (9,10), but 
it would be reasonable to think that BAT thermogenesis would 
demand higher cardiac activity, and NPs would establish a logic 
communication between heart and BAT. Further studies are re-
quired for a better understanding of this heart – BAT axis.   

 Retinoids 
 Retinoids, such as vitamin A (retinol), are involved in multiple 
essential biological functions including fuel metabolism by 
controlling adipogenesis and energy homeostasis (112 – 114). 
Retinoic acid (a metabolite of retinol) is a direct activator of 
sympathetic activity and an inducer of UCP1 expression in BAT 
and WAT. In fact, its chronic administration induces browning in 
white adipocytes (9,10,115,116).   

 Prostaglandins 
 Prostaglandins (PG) are a group of lipid compounds involved 
mainly in infl ammation, fever induction, and pain. Cyclooxy-
genase-2 (COX-2) is a key enzyme in PG formation. COX-2 has 
been described as downstream eff ector of  β -adrenergic signaling 
in WAT, being required for the induction of brown adipocytes in 
WAT depots, increasing energy expenditure, and protecting against 
HFD-induced obesity (10,117). Genetic and pharmacological app-
roaches have shown that COX-2 and prostaglandin E 2  (PGE 2  ) are 
involved in UCP1 expression in white, but not in brown adipocytes, 
suggesting that the browning process in WAT is COX-dependent 
(118). Current evidence has also demonstrated that lipocalin pros-
taglandin D synthase (L-PGDS) plays also a role in fuel utilization 
by BAT (119). In fact, under cold-acclimated conditions, mice 
lacking L-PGDS show elevated reliance on carbohydrate to provide 
fuel for thermogenesis and increased expression of genes regulat-
ing glycolysis and  de novo  lipogenesis in BAT. Th ese transcriptional 
diff erences are associated with increased lipid content in BAT and 
a BAT lipid composition enriched with  de novo  synthesized lipids. 
Actually, given that L-PGDS knockout mice showed unchanged 
levels of PGD2 in BAT, this suggests that L-PGDS may act as a lipoc-
alin (lipid binding protein) rather than as a prostaglandin synthase. 
Moreover, L-PGDS knockout mice exhibit increased expression of 
genes involved in thermogenesis and increased norepinephrine-
stimulated glucose uptake to BAT (119).    

 Peripheral regulation of BAT  

 Thyroid hormones 
 Th yroid hormones (THs) are produced in the thyroid gland in 
the form of thyroxine (T4) which is an inactive prohormone 
with low biological activity. T4 is transformed into the bioactive 
hormone triiodothyronine (T3) by catalytic action of enzymes 
iodothyronine deodinases (D1 and D2) expressed in diff erent 
tissues (120 – 124). THs play a key role in energy metabolism act-
ing on peripheral tissues, such as liver, pancreas, skeletal muscle, 
WAT, and BAT (124). Th ereby, animal models and patients with 
hyperthyroidism, characterized by high circulating levels of 
TH, show weight loss despite increased food intake, due to very 
high caloric demand (124 – 130). By contrast, hypothyroidism is 
associated with decreased metabolic rate, with increased body 
weight despite reduced food intake (124 – 126,131 – 134). 

 BAT is a direct target of THs and displays high expression of 
TH receptors (TR). In fact, THs work synergistic with norepi-
nephrine and are required to generate a full thermogenic response 
(124,130,135). Th e TR α  1  subtype in BAT ensures maintenance of 
normal adrenergic thermogenic response, while the TR β  1  sub-

its thermogenic activity by increasing UCP1 expression (82,85). 
Irisin also stimulates browning by increasing the expression of 
UCP1 and other BAT-genes in subcutaneous WAT through mito-
gen-activated protein kinase p38 MAP kinase and ERK MAP ki-
nase signaling (85), while genes characteristic of WAT are down-
regulated (84). More recently, one report showed that the actions 
of irisin might be of clinical value since both irisin and fi broblast 
growth factor (FGF21; see below) are cold-induced endocrine 
activators of BAT activity in humans (86). However, there are also 
several studies that have shown controversial results, and some 
authors failed to document an eff ect by contraction in circulating 
irisin levels in humans or an eff ect on beige/brite diff erentiation 
of human preadipocytes (87,88). Th erefore, the potential ben-
efi cial metabolic actions of irisin during exercise are still under 
debate, and some issues await clarifi cation. Th ese include the full 
characterization of the diff erent tissues expressing irisin (89) and, 
more importantly, the diff erent proteolytic mechanisms involved 
in its post-translational processing and the generation of puta-
tive secreted molecules (90). Th us, it seems obvious that further 
studies are needed to elucidate, in depth, this fi eld.   

 Transient receptor potential V4 channel 
 Th e transient receptor potential (TRP) family of cation channels 
mediates sensation across a broad physiological range of tem-
peratures. Several TRP members have been described, each of 
them sensing a particular temperature range. Th e TRPM8 chan-
nel is activated by modest cooling (environmental temperatures  
  �    27 ° C) (91,92), and TRPM8-defi cient mice exhibit a reduced 
ability to tolerate innocuous cold temperatures (93 – 95). TRPA1 
is activated by colder temperatures (environmental temperatures 
 �    17 ° C) than TRPM8 (96 – 98), while TRPV1 is activated by a 
noxious range of heat ( �    43 ° C) (99,100). TRPV3 and TRPV4 are 
warm-sensitive channels activated by innocuous warm tempera-
tures, with environmental temperature thresholds of 33 – 39 ° C and 
25 – 34 ° C, respectively (101 – 105). TRPV4 was fi rst identifi ed as an 
osmolality sensor (10,106,107), and it is highly expressed in adi-
pose tissue (106), where it acts as a negative regulator of PGC1 α , 
UCP1, and cellular respiration and therefore as an inhibitor of the 
thermogenic program in WAT (108). Additionally, it potently con-
trols the expression of multiple proinfl ammatory genes involved in 
the development of insulin resistance (108). Th is evidence is also 
supported by functional data of genetic ablation or pharmaco-
logical inhibition of TRPV4, both of which modulate thermogenic 
and proinfl ammatory pathways in adipose tissue (108). Further-
more, genetic ablation of TRPV4 induces elevated thermogenesis 
and protects from diet-induced obesity, adipose infl ammation, 
and from insulin resistance (10,108), suggesting that inhibition of 
TRPV4 could be a target for treating obesity and type 2 diabetes by 
inducing a thermogenic program in white adipocytes. Whatever 
the case, due to its alleged role in regulating osmotic pressure in 
the kidney, some possible secondary eff ects should be considered 
when regarding TRPV4 as a drug target (109,110).   

 Natriuretic peptides 
 Th e cardiac natriuretic peptides (NPs), atrial NP (ANP) and 
ventricular NP (BNP), are potent vasodilators secreted by heart 
muscle cells in response to high blood volume. A thermogenic 
eff ect of NPs, in both mice and human adipocytes, was recently 
demonstrated (111). Th us, when NPs bind to their receptors (NPR) 
on brown adipocytes, this activates p38 MAPK for induction of 
the expression of  Ucp1 ,  Pgc1 a  , and other genes implicated in ther-
mogenesis. Chronic administration of BNP also increases brown-
ing in white fat and enhanced oxygen consumption and  energy 
expenditure. Accordingly, in mice exposed to cold, in which BAT 
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type increases  Ucp1  gene expression (136,137). Th e functional 
relevance of THs on BAT is supported by animal data (138 – 142). 
Genetic and pharmacological approaches have confi rmed the 
role of the diff erent TR isoforms in BAT thermogenesis, showing 
that TR defi ciency leads to hypothermia and cold intolerance as-
sociated with reduced BAT thermogenesis due to sympathetically 
impaired response, although morphology, recruitment, and 
development of BAT are unaltered (138 – 142). Furthermore, D2 
is well recognized as an important enzyme in BAT physiology for 
TH-induced thermogenesis (143 – 146), and studies on genetic 
models with ablation of D2 expression suggest that D2-catalyzed 
T4 to T3 conversion is required to support BAT adrenergic 
responsiveness to generate heat in response to cold exposure 
(147 – 149). Th is evidence has been partially confi rmed in 
humans, where chronic exposure with TH increased both brown 
adipose tissue activity and volume, as well as the expression of 
TH-responsive genes, such as  Ucp1 , leading to improvement in 
glucose control (150).   

 Leptin 
 Th e importance of leptin in the regulation of thermogenesis is well es-
tablished. Leptin is a circulating hormone/cytokine which is released 
mainly by subcutaneous white adipose tissue, and has eff ects in both 
the central nervous system (CNS) and in peripheral tissues (151 – 155). 
Centrally, leptin controls food intake, energy expenditure, fat distribu-
tion, insulin sensitivity, FFAs oxidation, and lipolysis in the periphery. 
It is known that leptin increases SNS activity to BAT (156), and that 
 ob/ob  (leptin-defi cient) mice,  db/db  (leptin receptor-defi cient) mice, 
and  fa/fa  (leptin receptor-defi cient) rats have atrophied BAT, with 
little UCP1 expression, leading to reduced BAT activity and impaired 
thermogenesis (157,158). Th e thermogenic eff ect of leptin is mediated 
by the melanocortin system, more specifi cally through stimulation of 
 α -melanocyte-stimulating hormone ( α -MSH) release, which then 
activates sympathetic outfl ow to BAT. Th us, leptin binding to its 
receptor, LEPR-B, leads to an increase of proopiomelanocortin 
(POMC) and a decrease of neuropeptide Y (NPY)/agouti-related 
protein (AgRP) levels. Th e overall consequence is triggering of SNS 
activation, which leads to an increase of UCP1 transcription and 
thermogenesis in BAT (159).   

 Insulin 
 Insulin is secreted in pancreatic  β -cells in response to circulat-
ing glucose increase, acting as an anabolic hormone in peripheral 
tissues. BAT is one of the most insulin-responsive tissues with 
respect to stimulation of glucose uptake (2,160). Physiological 
conditions in which plasma insulin levels are elevated (refeeding) 
show increased glucose uptake into BAT (2,161,162), whereas 
states with low insulin levels (starvation or fasting) demonstrate 
reduced glucose uptake (2,162,163). In rodents, it was also found 
that insulin can promote thermogenesis through its action in the 
brain, triggering sympathetic activation to BAT (164). Interest-
ingly, insulin infusion increased glucose-uptake in BAT to levels 
similar to that in skeletal muscle, which could be associated to 
the high expression of GLUT4 in BAT, although it was not ac-
companied by concomitant thermogenesis unlike cold exposure 
(165). Phosphatidylinositol-3-kinase (PI3K), a major kinase 
mediator of insulin and insulin-like-growth factors, is counter-
acted by phosphatase and tensin homolog (PTEN). Recent data 
showed that PTEN positively regulates a BAT-selective ther-
mogenic program by blocking the PI3K pathway (166). Impor-
tantly, pharmacological PI3K inhibitors increase BAT thermo-
genesis and whole-body energy expenditure (166). However, the 
systemic signifi cance of brown adipocytes for insulin-induced 
glucose clearance was demonstrated using transgenic mice lack-

ing the insulin receptor in BAT (BATIRKO) in which the weight 
of BAT is decreased and enzymes of fatty acid synthesis are de-
creased (without change in the number of brown adipocytes), 
suggesting that insulin action is necessary for lipid accretion in 
BAT (41). In parallel, these mice develop an insulin-secretion 
defect, providing evidence that BAT plays a role in the regula-
tion of insulin secretion (41).   

 Adiponectin 
 Adiponectin (ADPN; also called adipocyte complement-related 
protein (Acrp30), apM1, or adipoQ) is a 244-amino-acid pro-
tein secreted from adipose tissue (167 – 170), placenta (171), and 
cardiomyocytes (172), among other tissues. ADPN increases 
fatty acid combustion and energy consumption via PPAR α  
activation, leading to decreased triglyceride content mainly in the 
liver and skeletal muscle through activation of AMP-activated 
protein kinase (AMPK; see below) activity (173). Adiponectin also 
increases hypothalamic AMPK activity via its receptor AdipoR1 
to stimulate feeding (174 – 176). Recent evidence has shown that 
ADP reduces thermogenesis by inhibiting BAT function. ADPN 
treatment reduces PKA signaling (177) and UCP1 expression in 
BAT (45,174,178). In keeping with this, genetic ablation of the 
 Adpn  gene increases body temperature, increases  Ucp1  expression 
in BAT, and more brown-like structure in inguinal fat compared 
to wild-type mice (179). Reconstitution of ADPN in these animal 
models blunted  β -adrenergic receptor agonist-induced thermo-
genesis of interscapular BAT (179). Taken together, these data 
suggest that the suppressive eff ect of ADPN on BAT thermogen-
esis could be associated to an increase in hypothalamic AMPK 
activity (see below), an idea that needs to be confi rmed.   

 Resistin 
 Resistin (RSTN) is an adipokine, originally identifi ed in adipose 
tissue (180) but expressed in a variety of tissues, including the hypo-
thalamus (181). Recently it has been demonstrated that resistin acti-
vates the ERK1/2 signaling pathway in the hypothalamus, involved 
in diverse cellular functions including cell growth, proliferation, 
and neuronal activity, which, in turn, reduces BAT thermogenesis 
(182,183). Th is evidence, alongside RSTN ’ s anorectic role and its 
 eff ect on hypothalamic AMPK (184,185), points towards an exten-
sive role of this adipokine in the modulation of BAT function.   

 Adrenal steroids 
 Glucocorticoids (such as cortisol and corticosterone) and 
mineralocorticoids (aldosterone) are steroid hormones se-
creted in the adrenal cortex and involved in metabolism, cell 
growth, and regulating ion and water transport. Cortisol acts by 
binding to the glucocorticoid receptor (GR), while aldosterone 
acts through the mineralocorticoid receptor (MR). Th e presence 
of GR on brown adipocytes was described many years ago (186): 
its activation in BAT reduces UCP1 expression (187,188). MR is 
also expressed in brown fat (189). Subsequently, studies in cells 
show that aldosterone inhibited the expression and function of 
UCP1 in brown adipocytes (187), while aldosterone treatment 
induced a signifi cant increase of triglyceride ’ s accumulation in 
WAT and increased expression of adipogenic genes (lipoprotein 
lipase- Lpl- ,  Ppar g  ) (190). Th ese data suggest that GR and MR 
signaling in BAT appears to act as a pivotal signal favoring lipid 
storage at the expense of heat production, hence promoting in 
brown adipocytes a specifi c function of white adipocytes.   

 Fibroblast growth factor 
 FGF21 is a metabolic regulator involved in the control of 
glucose homeostasis, insulin sensitivity, and ketogenesis, mainly 



   Central regulation of BAT   155

of POA neurons induces sympathetic thermogenesis in BAT, as 
well as shivering thermogenesis (212,220). Within the POA cold 
appears to signal mainly to the median part (MnPO), where 
glutamatergic stimulation with  N-mehyl-D-aspartate (NMDA) 
induces physiological responses mimicking a cold-defensive re-
sponse (221). On the contrary, stimulation of the medial POA 
(MPO) or lateral POA (LPO) does not recapitulate that eff ect 
(221). Furthermore, the POA projects to other central nuclei, 
modulating thermogenesis. Indeed, destruction of the ventro-
medial nucleus of the hypothalamus (VMH; see below) abolishes 
the ability of external cooling signaling to POA to stimulate BAT 
(222,223), suggesting that POA activation of BAT is meditated by 
the VMH. 

 Febrile responses are also mediated by the POA. Fever is a 
physiological condition that requires an increase of body temper-
ature in response to endogenous pyrogens released, for example, 
during infection. Th is provides an optimal hyperthermic envi-
ronment for mounting host defenses against invading bacteria or 
viruses, while reducing pathogen viability (213). Prostaglandins 
(PG), which are involved in mediating the febrile response, are 
synthesized in the brain vasculature and in peripheral tissues in 
response to immune signals. Besides previously mentioned eff ects 
on BAT thermogenesis and browning, there are studies using 
lipocalin prostaglandin D synthase (L-PGDS; which synthe-
sizes D-series PG) demonstrating that L-PGDS mRNA in BAT is 
strongly and positively correlated with activation of BAT metabo-
lism (119,224). Prostaglandins E 2  (PGE 2 ) also stimulate POA, 
activating BAT thermogenesis in a cAMP-dependent manner 
(225,226). In addition, the inhibitor of phosphodiesterase (the en-
zyme degrading cAMP), blunts fever induced by intra-POA PGE 2  
(227). Th ereby POA is known as a  ‘ fever or thermoregulatory cen-
ter ’ . Th e POA population with EP3 subtype of PGE receptor (EP3) 
is mainly GABAergic and projects to neurons at the dorsomedial 
nucleus of the hypothalamus (DMH) and the rostral raphe palli-
dus nucleus (rRPa), antagonizing GABA A  receptors and inducing 
fever by activating BAT thermogenesis (228). Fibers connecting 
POA to the DMH and rRPa will be explained below.   

 The ventromedial nucleus of the hypothalamus: 
the integrator center of peripheral signals 
 Th e VMH was the fi rst identifi ed as a hypothalamic site involved 
in thermoregulation. It was reported that electrical stimulation of 
that nucleus increased interscapular BAT temperature, and that 
this eff ect was abolished by  β -adrenergic blockade (217,229 – 233). 
Also, GABA agonists applied into the VMH abolish the pros-
taglandin E 2 -induced BAT activation via a sympathetic eff erent 
mechanism (225,234). On the other hand, glutamate injection 
into the VMH was shown to activate BAT (233 – 236), an eff ect 
promoted also by hydroxybutyrate (237), norepinephrine, 
serotonin, and tryptophan (238). Anatomical data have also 
demonstrated a link between the VMH and BAT. First, there is 
evidence that the VMH can be trans-synaptically infected from 
BAT with pseudorabies virus. For instance, 6 days aft er BAT 
inoculation with a transneuronal viral tract tracer, Bartha ’ s K 
strain of the pseudorabies virus, the infection penetrates into 
the VMH (239), an eff ect considered at some point controversial 
(240). Second, there are projections from the VMH to autonomic 
centers (2,127,241,242). In addition, there are several brain-
stem areas, such as the raphe pallidus (RPa) and inferior olive 
(IO), two nuclei which have been functionally linked to 
the regulation of BAT thermogenesis (240,243 – 246), where 
VMH neurons have been postulated to relay to modulate SNS 
activity (2,127,241). However, the role of the VMH in the regu-
lation of BAT activity remains controversial due to the lack of 

produced in the liver from where it is released into the blood 
(191 – 194). Th ere is evidence that FGF21 is also involved in 
BAT-induced thermogenesis (195). Current data have provided 
a mechanistic explanation, showing that induction of cAMP in 
brown adipocytes induces FGF21 release from BAT in response 
to noradrenergic stimulation (196). FGF21 expression is under 
the control of PPAR α  and FFAs availability, and has also been 
reported to promote thermogenic activity, increasing energy 
expenditure, and UCP1 expression  in vivo  as well as  in vitro  in 
WAT (197). In fact, mice defi cient in FGF21 display an impaired 
ability to adapt to chronic cold exposure, with diminished 
browning of WAT (197). Adipose-derived FGF21 increases the 
expression of UCP1 and other thermogenic genes in fat tissues, 
regulating this process, at least in part, by enhancing adipose tissue 
PGC1 α  protein levels and also cyclic adenosine 5 ′ -monophosphate 
response element-binding protein (CREB) and downstream genes 
associated with oxidative metabolism (195,198,199). 

 Recent fi ndings have shown that FGF21 also exerts central 
actions on energy homeostasis. In HFD-fed rats, FGF21 intracere-
broventricular (ICV) injection increases feeding, elevates energy 
expenditure, and improves insulin sensitivity, although with no 
changes in body weight (200). On the other hand, genetic models 
of  β -Klotho (transmembrane protein that acts with FGF recep-
tors) ablation in the suprachiasmatic nucleus of the hypothalamus 
(SCN) and the dorsal vagal complex (DVC) simulate features of 
physiological starvation response, such as increased glucocorti-
coid levels, suppressed physical activity, and altered circadian 
behavior (201). Overall, this evidence has led to the proposal of 
FGF21 as a novel appealing therapeutic reagent for type 2 diabetes 
mellitus and obesity. However, its clinical development has been 
challenging due to its poor pharmacokinetics (202).    

 Central regulation of thermogenesis: the anatomical 
issue 
 Normothermia in a cold environment is maintained in part 
through metabolic activation of BAT in order to generate heat, 
besides skin vasoconstriction to avoid heat loss. Both processes are 
regulated by SNS and accompanied by adrenergic cardiac stimu-
lation, to improve distribution of heat generated in thermogenic 
tissues (203 – 206). Furthermore, somatic motor nerves promote 
the generation of heat by skeletal muscle through shivering (207). 
In addition to these changes, cold responses engage activation 
of the thyroid and adrenal axes (208,209). All of these changes 
are co-ordinated at the central level, and in this section we will 
describe the main central circuits regulating BAT thermogenesis 
(5), summarized in Figures 2 and 3.  

 The preoptic area: the temperature central sensor 
 For many years the preoptic area (POA), also called anterior 
hypothalamic nucleus, has been considered the only region in 
the brain responsible for the control of thermoregulation, where 
cold-sensitive neurons are located (210 – 214). Th e POA also re-
ceives input from thermosensitive areas elsewhere in the body. 
Cold and heat receptors in the abdominal viscera send tempera-
ture information through splanchnic and vagus nerves to the 
CNS, where it is integrated into the fi nal response (211,215). 
Temperature changes could also be sensed by the spinal cord, 
which contains thermoreceptors detecting cold environment 
(216). It is well known that electric stimulation of POA activates 
BAT (217,218). Th e POA also contains heat-sensitive neurons 
whose tonic discharge is reduced by skin cooling and whose 
thermosensitivity to preoptic temperature is increased when the 
skin is cooled (219). As a result, skin cooling or direct cooling 
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BAT, leading to metabolic syndrome (250). Moreover, mice bear-
ing conditional ER α  knockout in SF1 neurons exhibit reduced 
plasma levels of norepinephrine and thermogenesis in BAT, with 
decreased UCP1, PPAR γ , PGC1 α , and  β 3-AR expression (251). 
Th ese data support the idea that the VMH is a key modulator 
of BAT. We have extensively studied the mechanisms within 
the VMH that regulate BAT activity. Our studies point towards 
AMPK in the VMH as a key negative regulator of sympathetically 
activated BAT thermogenesis, integrating peripheral signals, such 

information about the precise neuronal pathways that connect 
the VMH to BAT (247). 

 More recently, genetic evidence has also supported the 
role of the VMH in the modulation of BAT thermogenesis. For 
example, VMH-specifi c knockout of steroidogenic factor-1 
(SF-1) shows lower energy expenditure and expression of UCP1 
in BAT (248,249). On the other hand, silencing estrogen receptor 
 α  (ER α ) in the VMH increases body weight gain, visceral adipos-
ity, hyperphagia, hyperglycemia, and reduces thermogenesis in 

  Figure 2.     Regulation of brown adipose tissue thermogenesis. Th e preoptic area (POA) is the brain region responsible for receiving temperature signals from 
peripheral areas. Th us, when cold environment activates cutaneous receptors, or pyrogens induce prostaglandins, cold-sensitive neurons in the POA are 
activated for inducing thermogenesis: 1) through projections to the ventromedial hypothalamic nucleus (VMH) which activates sympathetic fi bers to brown 
adipose tissue (BAT), and 2) through disinhibition of a neural population in the dorsomedial hypothalamic nucleus (DMH), which projects preganglionic 
fi bers to the rostral raphe pallidus nucleus (rRPa), leading to activation of sympathetic projections to BAT. Th yroid hormones (THs; which are released by 
the thyroid gland and also directly activate thermogenesis in BAT), bone morphogenetic protein 8B (BMP8B), estradiol (E2), and glucagon-like peptide-1 
(GLP-1; secreted by the intestinal tract), inhibit AMPK activity (not shown; see Figure 3) in the ventromedial hypothalamic nucleus (VMH), leading to the 
activation of BAT thermogenesis by sympathetic nerves. Some evidence supports that ghrelin may well be involved in activation of BAT thermogenesis; 
however, defi nitive proof is lacking. Leptin is released from white adipose tissue (WAT) acting on leptin receptors (LEPR-B) in the arcuate nucleus of the 
hypothalamus (ARC), leading to activation of BAT thermogenesis. Th e mechanisms mediating the central actions of adiponectin (ADPN) and resistin 
(RSTN) on BAT is not clarifi ed. Neurons in the paraventricular hypothalamic nucleus (PVH) inhibit sympathetic signaling to BAT. Amylin, secreted by the 
pancreas, induces sympathetic activation of BAT thermogenesis through hypothalamic mechanisms not yet elucidated. Physical activity induces irisin release 
in skeletal muscle, which not only induces thermogenesis, but also activates the browning process in WAT, increasing oxygen consumption, uncoupling 
protein (UCP1) expression, and decreasing WAT genes (not shown in the Figure in order to simplify). In the same way, fi broblast growth factor 21 (FGF21) 
is secreted by the liver and also promotes browning. Natriuretic peptides, released by the heart, act directly on BAT receptors activating thermogenesis. In 
summary, BAT regulation is a complex and multifactorial process carried out mainly in the hypothalamus to adjust thermogenic responses, according to 
metabolic demands of the body. 3V    �    third ventricle.  
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mogenesis in BAT (257). In keeping with this, disinhibition of 
DMH neurons increases BAT sympathetic activation and ther-
mogenesis (228,256). Th e cellular basis of this mechanism is 
not totally clear, but GABAergic neurons in the POA appear to 
provide a key source of the tonic inhibitory input to sympathetic 
nerve fi bers in the DMH (228,258 – 261). However, neurons in the 
DMH do not project directly to BAT sympathetic fi bers, but they 
rather send monosynaptic projections to the rRPa that have been 
involved in mediating the eff ects of DMH neurons on BAT ther-
mogenesis. Th us, disinhibition of neurons in the DMH activates 
glutamate receptors in the rRPa, triggering BAT sympathetic 

as thyroid hormone, estradiol, and BPM8b, as well as drugs such 
as nicotine (127,241,252,253).   

 The dorsomedial nucleus of the hypothalamus 
 Th e DMH plays key roles in feeding and metabolic regulation 
associated with ingestive behavior (247,254,255), which is 
closely related to thermoregulation. Aft er many years of contro-
versial data, there is evidence that activation of neurons in the 
DMH elicits an increase in body temperature through a classic 
thermoregulatory mechanism (228,247,256). Excitatory amino-
acid receptors in the DMH mediate prostaglandin-evoked ther-

  Figure 3.     Interactions of hypothalamic nuclei regulating BAT thermogenesis. All complex peripheral signals are integrated at the central nervous system 
regulating the fi nal output to brown adipose tissue (BAT). Th e main brain region to integrate them is the hypothalamus where diff erent nuclei play key roles 
in the thermogenic response. Other brain sites, such as the preoptic area (POA) and rostral raphe pallidus (rRPa), also are involved in this network regulation. 
Th erefore, cold exposure induces neuronal activation of POA, which projects to other neurons in the ventromedial nucleus of hypothalamus (VMH), leading 
to activation of sympathetic fi bers to BAT. Th ere are several lines of evidence showing that this mechanism involves AMP-activated protein kinase (AMPK), 
which can be regulated by glucagon-like-peptide 1 (GLP-1), bone morphogenetic protein 8B (BMP8B), thyroid hormones (THs), or estradiol (E2), all of 
which induce sympathetic activity to BAT by decreasing AMPK activity. Some evidence supports that ghrelin may well be involved in activation of BAT 
thermogenesis; however, defi nitive proof is lacking. Th e dorsomedial nucleus of hypothalamus (DMH) is highly involved in BAT regulation. Th e DMH 
projects fi bers to the rRPa inducing BAT activity by increasing sympathetic tone. Th e paraventricular nucleus of hypothalamus (PVH) is also involved in 
the modulation of BAT thermogenesis by projecting inhibitory fi bers to the rRPa. Th e lateral hypothalamic area (LHA) contains orexin (OX-A and OX-B)-
expressing neurons which project to the VMH and the rRPa, activating BAT thermogenesis. Th e arcuate nucleus of hypothalamus (ARC) is characterized 
by the presence of an orexigenic neural population (coexpressing neuropeptide Y (NPY) and agouti-related protein (AgRP)) and an anorexigenic neuron 
population (coexpressing proopiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript which are inversely regulated by leptin. 
Leptin induces POMC expression and releasing of  α -melanocyte-stimulating hormone ( α -MSH), which binds to melanocortin-4 receptor (MC4R) within 
PVH, activating sympathetic fi bers to BAT. Leptin also inhibits NPY and AgRP which inhibits sympathetic neurons to BAT trough PVH fi bers. 3V    �    third 
ventricle;  β 3-AR    �     β 3-adrenergic receptor; ER α     �    estrogen receptor alpha; GABA-R    �    GABA receptor; GHS-R    �    growth hormone secretagogue receptor; 
GLP1-R    �    GLP-1 receptor; Glu    �    glutamate; LEPR-B    �    leptin receptor isoform B; SNS    �    sympathetic nervous system; TR    �    thyroid hormone receptor; 
PGE 2     �    prostaglandin E 2 ; EP3    �    prostaglandin E receptor type 3.  
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neurotrophic factor (BDNF) (287), histamine (288), urocortin 
(UCN) (289), cocaine- and amphetamine-regulated transcript 
(CART) (282,290), and PGE 2  (291). 

 From an anatomical point of view, there are studies demon-
strating that the PVH contains a large number of melanocortin-4 
receptor (MC4R)-expressing neurons that project to BAT. Th us, 
theoretically, activation of those neurons would produce both 
anorexia and increased BAT thermogenesis via SNS innervation 
through neurons in the rRPa (279,280,292 – 294). Nevertheless, 
this is again a controversial issue. Acute administration of the 
MC4R agonist melanotan II (MTII) induces short-term increases 
in BAT temperature (294). Genetic ablation of MC4R induces 
an obese phenotype, and restoration of MC4R specifi cally in the 
PVH prevents obesity by normalizing the eff ects of melanocortins 
on food intake; notably, the reduced energy expenditure was not 
rescued, suggesting that the PVH is not involved in mediating 
the eff ects of melanocortins on energy expenditure (295). In con-
trast, other authors demonstrated that melanocortins in the PVH 
increase thermogenesis in BAT (294,296). Th e possible explana-
tion for these confl icting data could be the presence of inhibitory 
MC4R presynaptic neurons, which are GABAergic inputs whose 
activation hinders the inhibition of thermogenesis by the PVH. 
Th us, although PVH involvement in the regulation of BAT func-
tion remains unclear, existing and emerging data suggest that the 
PVH exerts a negative regulation on BAT thermogenesis.   

 The arcuate nucleus of the hypothalamus (ARC) 
 Th e ARC is considered as a  ‘ master control center of feeding ’ , 
containing neural populations inducing orexigenic actions 
(NPY/AgRP) and also neural populations inducing anorexi-
genic actions ( α -MSH, the product of POMC, as well as CART) 
(255,297 – 302). However, there is evidence that ARC also regu-
lates BAT thermogenesis. In this sense, it has been demonstrated 
that the ARC orexigenic population inhibits thermogenesis and 
that partial loss of AgRP/NPY neurons leads to a lean, hypo-
phagic phenotype, also characterized by sympathetic activation 
of BAT (303,304). 

 Similarly to the PVH, the main implication of the ARC in 
thermogenesis regulation is linked to the central melanocortin 
system. Th us, loss of function of the key players of this system, 
such as POMC and MC4R, has been reported to cause massive 
obesity in rodents and humans (305,306). In this regard, MC4R 
defi ciency has been shown to blunt the ability of leptin to increase 
UCP1 expression in BAT and WAT (307). Given that the ARC is 
the major site for regulation of physiological processes by leptin, 
the possible role of this nucleus in the integration of leptin actions 
on thermogenesis is also of interest. Upon activation by leptin, 
POMC neurons in ARC release the catabolic fragment  α -MSH 
from nerve terminals to increase UCP1 expression in BAT (307). 
Recent data have demonstrated that leptin receptors in the ARC 
are necessary for leptin-induced increases in BAT sympathetic 
discharge; in keeping with this, deletion of leptin signaling in the 
ARC abolishes sympathetic activation to BAT (308). 

 Th e chemical signature of the ARC populations regulating 
BAT is controversial, and it seems that more than one neuronal 
type is taking part in this control. Mice lacking synaptic 
GABA release from RIP-Cre neurons in the ARC have reduced 
energy expenditure, become obese, and are extremely sensitive 
to HFD-induced obesity (309). In the same model, leptin ’ s ability 
to stimulate thermogenesis, but not to reduce feeding, is mark-
edly attenuated. Acute, selective activation of arcuate GABAergic 
RIP-Cre neurons, which monosynaptically innervate PVH 
neurons, rapidly stimulates brown fat and increases energy ex-
penditure but does not aff ect feeding. Importantly, this response 

activation and thermogenesis (262). Functional data support this 
concept; in fact, inhibition of neurons in the DMH or blockade 
of local glutamate receptors in the DMH reverses febrile and 
cold-evoked excitations of SNS and subsequent stimulations of 
BAT thermogenesis (256,262,263). Other data suggest that the 
IO may also have a role in the SNS control of BAT and that this 
nucleus may also be involved in functional interactions between 
the motor and thermoregulatory systems, through the DMH in 
the same way as the rRPa (5,245). Overall, the reported evidence 
so far suggests that, in a normothermic environment, GABAergic 
neurons in the POA tonically inhibit the DMH. However, in a 
cold environment, signals from somatosensory nerves in the 
skin activate GABAergic neurons suppressing the tonic fi ring 
of the GABAergic neurons in the POA, leading to disinhibition 
of DMH neurons, which in turn stimulate neurons in the rRPa 
controlling BAT sympathetic tone and the IO, and therefore 
stimulating thermogenesis. 

 Recent fi ndings raise the possibility of alternative mechanisms 
through which the DMH activates BAT thermogenesis. Th is is 
based on the fi nding that there are leptin receptors on the DMH 
which are involved in the stimulation of the rRPa and conse-
quent sympathetic activation of BAT (264,265). Finally, there 
is evidence suggesting that knockdown of NPY specifi cally in 
the DMH promotes both the development of brown adipocytes 
in WAT and also BAT activity, increasing thermogenesis and 
energy expenditure (266). Furthermore, this manipulation pre-
vents HFD-induced obesity and improves glucose homeostasis 
(266). Leptin is probably involved in this process by activat-
ing NPY in the DMH (267), although more studies are needed 
to elucidate this mechanism. Finally, the hypothalamic factor 
modulating the hypothalamic – pituitary – adrenal (HPA) axis, 
namely, corticotrophin-releasing hormone (CRH), increases 
BAT thermogenesis through the DMH and mRPa (268).   

 The paraventricular nucleus of the hypothalamus 
 Th e paraventricular nucleus of the hypothalamus (PVH) plays 
an important role in energy homeostasis; however, its possible 
involvement in the regulation of thermogenesis and energy ex-
penditure in BAT has been controversial. Because PVH neurons 
that project to the spinal sympathetic preganglionic cell column 
are activated during fever (269), and lesions of the PVH attenu-
ate fever (270 – 272), it was initially thought that neurons in the 
PVH played a role in the excitation on BAT thermogenesis. Th is 
evidence was also supported by anatomical data demonstrating 
that the PVH is heavily trans-synaptically infected from BAT with 
pseudorabies virus (239,273,274) or the H129 strain of the herpes 
simplex virus-1 (HSV-1) (275). However, electrical stimulation of 
the PVH does not aff ect BAT (276,277). Furthermore, disinhibi-
tion of neurons in the PVH, or their glutamatergic activation with 
NMDA, inhibits the increases in BAT sympathetic nerve activ-
ity evoked by cooling (277,278). Besides this, activation of PVH 
neurons could attenuate the increases in BAT activity evoked by 
NMDA injections into the rRPa (277), suggesting the existence of 
inhibitory projections from the PVH to rRPa decreasing sympa-
thetic nerve activity to BAT. On the other hand, there are studies 
demonstrating that NPY inhibits BAT through Y 5  receptors in the 
PVH and decreases UCP1 expression (279 – 282). Along the same 
lines, orexin-A (see below) administration within the PVH does 
not aff ect UCP1 expression in BAT (283). Th ese data contrast 
with evidence showing that SNS activity, UCP1 mRNA expres-
sion, or temperature in interscapular BAT is increased following 
administration of several agents such as CRH (284), hydroxy-
butyrate (237), glutamate (285), norepinephrine, serotonin and 
tryptophan (238), cholecystokinin (CCK) (286), brain-derived 
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was further explored by our group, and we demonstrated that 
decreased AMPK activity, specifi cally within the VMH, ac-
tivates BAT thermogenesis through increased SNS outfl ow 
(127,241,252,308). Notably, this pathway, which was initially 
described for central eff ects of thyroid hormones on energy 
balance (127), is also shared by leptin (322), BMP8B (bone mor-
phogenetic protein 8B) (241), estradiol (E2) (M.L., unpublished 
data), glucagon like peptide-1 (GLP-1) (R.N., unpublished data), 
and nicotine (252), which have led us to propose the VMH 
AMPK – SNS – BAT axis as a canonical mechanism modulat-
ing energy homeostasis (124), with possible implications in the 
treatment of obesity. Th is was demonstrated by using constitu-
tive genetic activation of AMPK in the VMH which blocked the 
actions of the factors described above (127,241,252,322). Ad-
ditional studies are ongoing to test whether other hypothalamic 
sensors, such as uncoupling protein 2 (UCP2) and mTOR (M.L., 
unpublished observations), are also involved in the modulation 
of BAT.   

 Orexins 
 Orexins (OX-A and OX-B), also named hypocretins, are pro-
duced in neurons located in the lateral hypothalamic area (LHA), 
the DMH, and perifornical hypothalamus (323 – 325). It is known 
that activation of the LHA promotes BAT function (326). In keep-
ing with this, orexins have important roles in energy balance and 
feeding (323 – 325,327), and compelling evidence derived from 
genetic mouse models has suggested that orexins promote energy 
expenditure (328,329) through modulation of locomotor activity 
and BAT thermogenesis (330 – 332). In fact, recent data suggest 
that orexins are required for BAT development, diff erentiation, 
and function (330). Moreover, lack of orexin ’ s action compro-
mises energy balance, as demonstrated in orexin knockout 
mice, which are prone to diet-induced obesity, when compared 
with normal mice (330).  In vitro  data pointed to a direct eff ect 
of orexin on diff erentiation of new brown adipocytes (330,333). 
Morphological data have also identifi ed a role for orexin neurons 
in the regulation of BAT thermogenesis via the SNS, involving 
direct projection from the LHA to the rRPa, that activates its 
eff erents to premotor sympathetic neurons via a catecholamin-
ergic mechanism (273,334 – 337). Consistent with this, central 
injection of OX-A or OX-B, activation of orexin neurons in the 
LHA, or specifi c administration of OX-A in the VMH or the 
rRPa increased BAT thermogenic activity (326,335 – 338). Th is 
eff ect can be reproduced by administration into the diagonal 
band of Broca (339). Of note, the thermogenic eff ect of OX-A 
displays a very precise anatomical pattern, since its administra-
tion into the PVH does not impact BAT (283). Th e relevance of 
the thermogenic eff ect of orexin remains inconclusive but it has 
been speculated that it may be acting as an adaptive response to 
stress (340). 

 A protective role in aging-decreased thermogenic capacity 
was also recently suggested for orexins (341). Th e aging process 
causes an increase in percent body fat, but the mechanism remains 
unclear. Current data from rodent experiments have shown that 
aging is associated with defective diff erentiation of BAT, along-
side morphologic abnormalities and thermogenic dysfunction in
rodents (341) and humans (47,342,343). In fact, interscapular 
brown tissue in aged mice is progressively populated by adi-
pocytes, bearing white morphologic characteristics (341). Aged 
mice also fail to mobilize intracellular fuel reserves from brown 
adipocytes and exhibit defi ciency in homeothermy. Of note, those 
eff ects are reversed by OX-A administration, while they are ac-
celerated in mice in which OX-producing neurons were ablated 
(341). Further work will be required to address whether the orexin 

is dependent upon GABA release from RIP-Cre neurons. Th is 
evidence demonstrates that GABAergic RIP-Cre neurons in the 
ARC selectively drive energy expenditure, contribute to leptin ’ s 
stimulatory eff ect on thermogenesis, and protect against diet-
induced obesity (309). 

 Since it is known that thermogenesis can be induced by diet, 
it could be hypothesized that activation of leptin receptors in the 
ARC could be involved in diet-induced BAT activity. Although 
leptin levels are higher in obese subjects due to increased WAT 
mass, the leptin resistance in these patients likely avoids the ca-
pacity of leptin to activate GABAergic RIP-Cre neurons in the 
ARC, and thereby does not activate thermogenesis through PVH 
connections. On the other hand, mice lacking RIP-Cre neurons 
are extremely sensitive to diet-induced obesity due to a defect in 
diet-induced thermogenesis (290). However, other mechanisms 
involved in diet-induced BAT activation still remain unclear. 
Recent data using genetic mouse models of conditional creatine 
kinase knockout mouse also indicate that NPY reduction in the 
ARC is coupled to increased UCP1 expression in BAT, resulting 
in activation of thermogenesis, and suggesting that NPY in the 
ARC negatively regulates BAT function (310). Th e same authors 
recently reported the implication of Rho-kinase 1 (ROCK1) from 
ARC neuronal population in the regulation of BAT thermogen-
esis. ROCK regulates leptin action and body weight homeostasis, 
and genetic defi ciency of ROCK1, in POMC and AgRP neurons, 
promotes obesity and decreased leptin sensitivity (311), also de-
creasing the eff ect of leptin on the activation of the thermogenic 
program. Finally, mice with an AgRP neuron-specifi c deletion 
of vesicular GABA transporter are lean, resistant to obesity, and 
show increased BAT activity (312).    

 Others central factors infl uencing BAT 
thermogenesis: novel targets to combat obesity?  

 The VMH AMPK – SNS – BAT axis: a canonical regulator 
of energy balance 
 Besides the classical neuropeptide-based theory for both feeding 
and energy expenditure control, recent data demonstrate that 
basic cellular sensors, such AMPK and the mechanistic target 
of rapamycin (mTOR), play a major role in the modulation of 
energy balance (300,313 – 317). At hypothalamic level, the AMPK 
pathway is a canonical route regulating energy homeostasis, by 
integrating peripheral signals, such as hormones and metabolites 
with hypothalamic networks. AMPK is a cellular gauge that is 
activated in conditions of low energy, increasing energy produc-
tion and reducing energy-wasting (300,313,314,316). AMPK 
is an important regulator of fatty acid biosynthesis, suppressing 
 de novo  lipogenesis by inactivation of acetyl-CoA carboxylase 
(ACC) by phosphorylating it (300,314). AMPK also regulates 
neuropeptide expression in the ARC (318 – 320). 

 Current evidence from our group has linked hypothalamic 
AMPK with BAT thermogenesis through modulation of the 
SNS. Although the fi rst evidence linking hypothalamic AMPK 
with energy balance was mainly focused on feeding (300,318 – 320), 
it has become evident that AMPK also modulates the other side 
of the balance, namely energy expenditure. Null mice of protein 
tyrosine phosphatase 1B (PTP1B, which acts as an inhibitor of 
both insulin and leptin receptor signaling) show decreased body 
weight and are resistant to diet-induced obesity, associated with 
decreased hypothalamic AMPK α  2  activity and increased BAT 
thermogenesis (321). Th is led to the speculation that hypotha-
lamic AMPK may control BAT thermogenesis through the SNS, 
although it was not shown by those authors. Th is relationship 
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type 2 diabetes and have been shown also to decrease BMI, stud-
ies addressing and uncovering their eff ects on energy expenditure 
are eagerly awaited.   

 Amylin 
 Amylin is a pancreatic hormone that was recently shown to be 
involved in central regulation of thermogenesis (353 – 357). Its 
ICV administration reduces body weight and food intake and 
increases body temperature by inducing sympathetic activity to 
BAT. Th ese eff ects are blocked by pharmacological antagonism 
of amylin receptors, supporting their implication in BAT ther-
mogenesis activation (357). In line with these data, neuronal 
overexpression of the amylin receptor subunit, RAMP1 (recep-
tor-activity modifying protein 1) leads to higher energy expen-
diture, as indicated by increased oxygen consumption, elevated 
body temperature, and higher sympathetic tone subserving BAT. 
Consistent with this, the nestin/hRAMP1 transgenic mice had 
elevated BAT mRNA levels of PGC1 α , UCP1, and UCP3, which 
can all be reversed by chronic blockade of sympathetic signaling 
(356). Th ese data have a potential clinical impact, since amylin 
and its analogs have recently emerged as potential antiobesity 
drugs. In particular, the demonstration that amylin can restore 
or enhance leptin sensitivity in obese patients has raised inter-
est in the CNS-mediated physiological eff ects of amylin and its 
role in the pathogenesis of obesity (356 – 359). Pramlintide is the 
clinically available amylin analogue currently approved for the 
treatment of patients with type 1 diabetes mellitus or type 2 dia-
betes mellitus who have not achieved optimal glycemic control 
aft er insulin therapy. Used as an adjunct to lifestyle changes, this 
drug decreased food intake and body weight in obese individuals 
followed for 12 months (360). In another clinical study conducted 
in obese or overweight subjects, the combined treatment with 
leptin and amylin for 4 weeks caused more weight loss than in 
the individual treatment groups (361). Th erefore, these fi ndings 
support amylin as a promising antiobesity target, particularly 
for use in combinatorial therapy, a strategy that is now arising 
to maximize weight reduction (359,362). Whatever the case, an 
exact knowledge of the molecular underpinnings modulating its 
actions will be essential to refi ne the design of further antiobe-
sity therapies. Further work will be required to assess the exact 
brain populations and molecular mechanisms involved in 
the control of BAT activity by amylin. Investigating the role of 
AMPK-expressing neurons in the VMH is an interesting 
strategy.    

 Summary and conclusions 
 BAT is a key organ in the maintenance of temperature through 
dissipation of heat by mitochondrial uncoupling. Although the 
 ‘ classical ’  central control of BAT function was mainly based on 
the modulation of sympathetic outfl ow, the molecular details of 
that interaction have remained elusive. Recent developments have 
demonstrated that  ‘ traditional ’  hormones, such as leptin (308), 
thyroid hormones (127), estradiol (250,251) (M.L., unpublished 
observations), and GLP-1 (352) (R.N., unpublished observa-
tions), as well as  ‘ new ’  peripheral molecules, such as amylin 
(356,357,359), nesfatin-1 (363), cannabinoids (364,365), irisin 
(84), FGF21 (196), BMP7 (349), and BMP8B (241), modulate 
BAT function by acting on several hypothalamic nuclei. Th us, 
AMPK in the VMH (127,241,252,322), NPY neurons in the 
DMH (266), GABAergic neurons in the ARC (309), and orexin 
neurons in the LHA (328 – 331), among others, play a major 
and canonical role in the modulation of BAT thermogenesis. 
However, although the recent developments in this fi eld have 

system may be targeted for intervention to reverse age-associated 
increase in fat mass. In this regard, aging is also associated with 
important changes such as leptin resistance, blunting normal 
central and peripheral functions of leptin (344,345). Th us, 
restoration of leptin sensitivity during aging might be another 
possibility to increase BAT function and reduce the amount 
of fat. Also, ablation of the ghrelin receptor (growth hormone 
secretagogue receptor, GHS-R) in old mice increases energy ex-
penditure and resting metabolic rate and prevents age-associated 
decline in UCP1 expression (346). Th ese results suggest that 
the ghrelin/GHS-R system might also be of clinical relevance. 
Finally, reduced nuclear SIRT1 activity initiates age-related 
mitochondrial decline (347,348), so it is also tempting to 
speculate that the reactivation of SIRT1 in old age might restore 
BAT activity.   

 Bone morphogenetic proteins (BMPs) 
 BMPs belong to the transforming growth factor superfamiliy 
and have been recently discovered to be key actors in the dif-
ferentiation and development of BAT (241,349). Recently, it has 
been discovered that BMP8B is expressed in BAT and also in 
the hypothalamus. Notably, central administration of BMP8B 
induces thermogenesis, and increased core temperature, leading 
to weight loss. In the VMH, this action of BMP8B is AMPK-
dependent, and increases sympathetic outfl ow to BAT, without 
altering feeding behavior (241). Th is evidence, alongside our data 
showing that nicotine stimulates thermogenesis through the same 
mechanism (252,253), indicates that this pathway may be a useful 
target for obesity treatment. Likewise, systemic administration 
of BMP7 reduces body weight gain at least in part due to induc-
tion of BAT-mediated energy expenditure (349). Stimulation of 
 β  3 -adrenoreceptors and BMP7 synergistically increase UCP1 
expression in WAT, suggesting that BMP7 may increase the 
sensitivity of adipocytes to sympathetic tone, like BMP8B 
(350). Whether BMP7 actions are mediated by the VMH AMPK –
 SNS – BAT axis remains unclear, but it is a possibility worth 
investigating. In this sense, BMP receptors are present in diff erent 
hypothalamic regions involved in metabolic control (241). Th us, 
it seems that a cross-talk between BMP signals and SNS activation 
on peripheral and central levels may be a critical way to modulate 
global thermogenic capacity. 

 Besides its central action, BMP8B appears to be produced 
by mature brown adipocytes and its expression regulated by 
temperature and other metabolic cues, suggesting that it is 
under the control of central temperature sensing (241). By con-
trast, BMP7 is produced by the stromal vascular cells within the 
adipose tissue and may serve as a niche factor to drive the 
tissue-resident progenitors to diff erentiate into the brown 
lineage (350).   

 Glucagon-like peptide 1 
 Another recently reported factor that infl uences central regula-
tion of BAT thermogenesis is GLP-1, which when directly admin-
istrated into the brain reduces body weight by increasing BAT 
thermogenesis, a process correlated with increased activity of 
sympathetic fi bers innervating BAT (351). Th is fi nding suggests 
that increased BAT thermogenesis may be an additional mecha-
nism in which pharmacological stimulation of GLP-1R controls 
energy balance (351,352). However, the exact brain regions and 
pathways through which GLP-1 stimulates BAT activity are un-
reported, although evidence from our group indicates that this 
eff ect is mediated by modulation of AMPK in the VMH (R.N., 
unpublished data). Taking into account that long-acting GLP-1 
agonists are now at the forefront in the clinical management of 
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generated a lot of excitement, some doubt still exists with regard to 
the possibility of targeting BAT thermogenesis as a mechanism to 
treat obesity (5,6,8,33,53). Novel techniques, such as optogenetics, 
will clarify with more detail the existing mechanisms controlling 
BAT activity. Additionally, it is likely that new circuits implicated 
in thermogenesis will be also identifi ed. Th e use of state-of-the-art 
methods will give us valuable and accurate information regarding 
the molecular targets to stimulate thermogenesis. Although the 
existence of cold-sensitive neurons has been documented long 
ago, the recent characterization of temperature-sensitive receptors 
open up new avenues to uncover the neural mechanisms involved 
in adaptation to changes in environment. Additional work will 
be necessary to demonstrate if our current hope in mechanisms 
controlling thermogenesis will be of valuable clinical therapeutic 
application in the future.            
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