Gold Standard Evaluation of an Automatic HAIs Surveillance System
Identificadores
Identificadores
URI: http://hdl.handle.net/20.500.11940/15965
PMID: 31662963
DOI: 10.1155/2019/1049575
ISSN: 2314-6133
Visualización ou descarga de ficheiros
Visualización ou descarga de ficheiros
Data de publicación
2019Título da revista
BioMed research international
Tipo de contido
Artigo
DeCS
sistemas de información sanitaria | estándares de referencia | infección hospitalaria | sensibilidad y especificidad | historias clínicas electrónicas | humanos | recopilación de datos | vigilancia de la poblaciónMeSH
Population Surveillance | Health Information Systems | Humans | Data Collection | Reference Standards | Sensitivity and Specificity | Cross Infection | Electronic Health RecordsResumo
Hospital-acquired Infections (HAIs) surveillance, defined as the systematic collection of data related to a certain health event, is considered an essential dimension for a prevention HAI program to be effective. In recent years, new automated HAI surveillance methods have emerged with the wide adoption of electronic health records (EHR). Here we present the validation results against the gold standard of HAIs diagnosis of the InNoCBR system deployed in the Ourense University Hospital Complex (Spain). Acting as a totally autonomous system, InNoCBR achieves a HAI sensitivity of 70.83% and a specificity of 97.76%, with a positive predictive value of 77.24%. The kappa index for infection type classification is 0.67. Sensitivity varies depending on infection type, where bloodstream infection attains the best value (93.33%), whereas the respiratory infection could be improved the most (53.33%). Working as a semi-automatic system, InNoCBR reaches a high level of sensitivity (81.73%), specificity (99.47%), and a meritorious positive predictive value (94.33%).