GLP-1 Increases Circulating Leptin Levels in Truncal Vagotomized Rats

Identificadores
Identificadores
Visualización ou descarga de ficheiros
Visualización ou descarga de ficheiros
Data de publicación
2023Título da revista
Biomedicines
Tipo de contido
Artigo
Resumo
GLP-1 is a gastro-intestinal hormone acting within the gut/brain axis for energy balance regulation. We aimed to evaluate the role of the vagus nerve in whole-body energy homeostasis and in mediating GLP-1 effects. For this, rats submitted to truncal vagotomy and sham-operated controls underwent a comprehensive evaluation, including eating behavior, body weight, percentage of white (WAT) and brown adipose tissue (BAT), resting energy expenditure (REE) and acute response to GLP-1. Truncal vagotomized rats had significantly lower food intake, body weight, body weight gain, WAT and BAT, with a higher BAT/WAT ratio, but no significant difference in REE when compared to controls. Vagotomized rats also had significantly higher fasting ghrelin and lower glucose and insulin levels. After GLP-1 administration, vagotomized rats depicted a blunted anorexigenic response and higher plasma leptin levels, as compared to controls. However, in vitro stimulation of VAT explants with GLP-1 resulted in no significant changes in leptin secretion. In conclusion, the vagus nerve influences whole-body energy homeostasis by modifying food intake, body weight and body composition and by mediating the GLP-1 anorectic response. The higher leptin levels in response to acute GLP-1 administration observed after truncal vagotomy suggest the existence of a putative GLP-1-leptin axis that relies on the integrity of gut-brain vagal pathway.
A non ser que se indique outra cousa, a licenza do ítem descríbese comoAttribution 4.0 International (CC BY 4.0)
