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Low nadir CD4+ T-cell counts predict gut dysbiosis in HIV-1
infection

Yolanda Guillen'?, Marc Noguera-Julian'3, Javier Rivera'?, Maria Casadella'?, Alexander S. Zevin*, Muntsa Rocafort',
Mariona Parera’, Cristina Rodriguez', Marcal Arumi’, Jorge Carrillo'?, Beatriz Mothe'>*, Carla Estany®, Josep Coll', Isabel Bravo®,
Cristina Herrero®, Jorge Saz® Guillem Sirera®, Ariadna Torrella’, Jordi Navarro®’, Manuel Crespo®, Eugénia Negredo®>~,

Christian Brander'**°, Julia Blanco'*3, Maria Luz Calle?, Nichole R. Klatt*, Bonaventura Clotet**> and Roger Paredes'>3>

Human immunodeficiency virus (HIV)-1 infection causes severe gut and systemic immune damage, but its effects on the gut
microbiome remain unclear. Previous shotgun metagenomic studies in HIV-negative subjects linked low-microbial gene counts
(LGC) to gut dysbiosis in diseases featuring intestinal inflammation. Using a similar approach in 156 subjects with different HIV-1
phenotypes, we found a strong, independent, dose-effect association between nadir CD4+ T-cell counts and LGC. As in other
diseases involving intestinal inflammation, the gut microbiomes of subjects with LGC were enriched in gram-negative Bacteroides,
acetogenic bacteria and Proteobacteria, which are able to metabolize reactive oxygen and nitrogen species; and were depleted in
oxygen-sensitive methanogenic archaea and sulfate-reducing bacteria. Interestingly, subjects with LGC also showed increased
butyrate levels in direct fecal measurements, consistent with enrichment in Roseburia intestinalis despite reductions in other
butyrate producers. The microbiomes of subjects with LGC were also enriched in bacterial virulence factors, as well as in genes
associated with beta-lactam, lincosamide, tetracycline, and macrolide resistance. Thus, low nadir CD4+ T-cell counts, rather than
HIV-1 serostatus per se, predict the presence of gut dysbiosis in HIV-1 infected subjects. Such dysbiosis does not display obvious

HIV-specific features; instead, it shares many similarities with other diseases featuring gut inflammation.

Mucosal Immunology (2019) 12:232-246; https://doi.org/10.1038/s41385-018-0083-7

INTRODUCTION
In settings with adequate access to antiretroviral therapy (ART),
the main clinical problems of people living with human
immunodeficiency virus (HIV)-1 (PLWH) derive either from late
HIV-1 diagnosis'? or from premature aging.>* Up to one-third of
all HIV-1-related deaths in Western countries can be attributed to
late HIV-1 diagnosis.> Low nadir CD4+ T-cell counts are a major
risk factor for developing AIDS- and non-AIDS-defining illnesses,®®
bacterial infections,” ART failure® and suboptimal immune
reconstitution with ART.'®"" Premature aging involves the
precocious development of type 2 diabetes, dyslipidemia,
cardiovascular diseases, osteoporosis, and frailty syndrome.* In
PLWH, such illnesses have been linked to chronic inflammation,
immune activation, and endotoxemia.*'?>"'* In non-HIV-infected
subjects, they have been related to shifts in the gut microbiome
associated with reduced microbial gene richness.'> %°

The gut microbiome is believed to play a central role in HIV-1
immunopathogenesis as well as in HIV-associated chronic
complications. HIV-1 infection damages the intestinal mucosal
barrier and gut-associated lymphoid tissues'**' enabling

translocation of bacterial products to regional lymph nodes and
systemic circulation.?*?* Infection also induces inflammation of
the mesenteric fat and promotes extensive deregulation of local
immune responses.?* In all, this contributes to chronic inflamma-
tion and immune activation, which are only partially restored by
ART.® Immune activation hinders immune reconstitution,?%?’
diminishes the efficacy of HIV-1 preventive and curative strate-
gies,?! fosters immune senescence®®3°, and at the mucosal level,
is a major risk factor for HIV-1 transmission.?’

However, the effects of HIV-1 infection on the gut microbiome
are not well understood and, to date, a consistent pattern of gut
dysbiosis has not been identified. Unlike the vaginal microbiome,
where compositional shifts from homeostasis are often recogniz-
able as dysbiotic community types,®'*? dysbiosis in the gut is
more difficult to detect and even to define. As a matter of fact, the
debate on what characterizes a healthy gut microbiome is still
ongoing®, and over 20% of the interperson microbiome
variability is associated with factors related to diet, drugs, and
anthropometric measurements,>* which may confound associa-
tions between gut microbiome shifts and diseases.
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Table 1. Study cohort characteristics
All subjects Low-gene counts High-gene counts p Value
(n=156) (n=103) (n=53)
Age, years, median (IQR) 43 (35; 51) 46 (36; 53) 38 (35; 46) 0.024
Gender, n (%) Men 124 (79.5%) 77 (74.8%) 47 (88.7%) 0.058
Women 31 (19.9%) 26 (25.2%) 5 (9.4%) 0.020
Transgender women 1 (0.6%) 0 1 (1.9%) 0.340
Ethnicity, n (%) Asiatic 1 (0.6%) 0 1 (1.9%) 0.340
Caucasian 124 (79.5%) 88 (85.4%) 36 (67.9%) 0.013
Hispanic-latin 28 (17.9%) 12 (11.7%) 16 (30.2%) 0.007
Other 3 (1.9%) 3 (2.9%) 0 0.551
HIV-1 risk group, n (%) MSM 100 (64.1%) 54 (52.4%) 46 (86.8%) <0.001
Non-MSM 56 (35.9%) 49 (47.6%) 7 (13.2%)
HIV-1 status, n (%) HIV-1-negative 27 (17.3%) 11 (10.7%) 16 (30.2%) 0.004
HIV-1-positive 129 (82.7%) 92 (89.3%) 37 (69.8%)
HIV-1 phenotype, n (%) Late presenter 11 (7.1%) 9 (8.7%) 2 (3.8%) 0.335
Discordant 18 (11.5%) 15 (14.6%) 3 (5.7%) 0.118
Concordant 53 (34.0%) 42 (40.8%) 11 (20.8%) 0.277
Early-treated 13 (8.3%) 8 (7.8%) 5 (9.4%) 0.277
ART-naive 15 (9.6%) 8 (7.8%) 7 (13.2%) 0.783
Viremic controller 11 (7.1%) 5 (4.9%) 6 (11.3%) 0.033
Elite controller 8 (5.1%) 5 (4.9%) 3 (5.7%) 0.421
HIV-1-negative 27 (17.3%) 11 (10.7%) 16 (30.2%) 0.004
BMI, kg/mz, median (IQR) 23.8 (22.0; 26.1) 23.7 (21.8; 25.5) 24.4 (22.3; 26.3) 0.215
History of allergy, n (%) Yes 30 (19.2%) 21 (20.4%) 9 (17.0%) 0.673
No 122 (78.2%) 78 (75.7%) 44 (83.2%) 0.413
NA 4 (2.6%) 4 (3.9%) 0 0.300
Antibiotic intake, previous 3 months, Yes 2 (1.3%) 2 (1.9%) 0 0.549
n (%) No 154 (98.7%) 101 (98.1%) 53 (100.0%)
Antibiotic intake, previous 6 months, Yes 35 (22.4%) 26 (25.2%) 9 (17.0%) 0312
n (%) No 121 (77.6%) 77 (74.8%) 44 (83.0%)
Fecal consistency, n (%) Hard 56 (35.9%) 33 (32.0%) 23 (43.4%) 0.217
Soft 91 (58.3%) 63 (61.2%) 28 (52.8%) 0.392
Liquid 5 (3.2%) 4 (3.9%) 1 (1.9%) 0.662
NA 4 (2.6%) 3 (2.9%) 1 (1.9%) 1.000
Abdominal transit alterations, n (%) Yes 23 (14.7%) 14 (13.6%) 9 (17.0%) 0.636
No 127 (81.4%) 85 (82.5%) 42 (79.2%) 0.666
NA 6 (3.8%) 4 (3.9%) 2 (3.8%) 1.000
CD4+ T-cell counts, median (IQR) Current, cells/mm? 700.0 (462.0; 860.0) 635.5 (331.0; 851.2) 750.0 (558.0; 930.0) 0.126
Current, % 33.0 (24.2; 40.2) 32.8 (23.6; 40.2) 33.8 (25.6; 40.3) 0.474
Nadir, cells/ mm?® 337.0 (140.0; 528.5)  280.0 (113.0; 491.5) 443.0 (339.0; 601.0) 0.002
CD8+ T-cell counts, median (IQR) Current, cells/ mm*® 7765 (576.0; 1012.0) 791.5 (558.8; 991.2) 748.5 (604.2; 1158.0) 0.294
Current, % 39.4 (33.0; 48.92) 38.2 (31.6; 49.7) 41.6 (34.9; 47.1) 0.607
CD4+/CD8+ ratio 0.9 (0.5; 1.2) 0.9 (0.5; 1.3) 0.8 (0.5;1.2) 0.943
HIV-1 RNA, copies/mL, median (IQR) <40.0 (40.0; 711.5) <40.0 (40.0; 79.5) <40.0 (40.0; 1339.0) 0.074
MSM men-who-have-sex-with-men; ART antiretroviral therapy; BMI body mass index; SD standard deviation; IQR 25-75% interquartile range.

Initial HIV gut microbiome studies using 16S rRNA gene
sequencing suggested a shift from Bacteroides to Prevotella
dominance in HIV-1 infection.”?**™*® More recently, our group
was able to demonstrate that such changes were confounded by
sexual preference—men-who-have-sex-with-men (MSM) were
enriched in Prevotella—and, after controlling for HIV-1 risk group,
there was no consistent microbial dysbiosis pattern discernible by
165 rRNA gene sequencing.*’ One implication of our findings is
that we should no longer expect “community-type structures” or

Mucosal Immunology (2019) 12:232-246

“enterotype”-like microbiome clustering by HIV-infected vs.
uninfected individuals. Considering the large biomass, ecological
complexity and functional redundancy of the gut microbiome, it is
conceivable that altered microbiome states might be subtler, and
possibly imply shifts in discrete groups of microbial species or
changes in functional features which might not necessarily be
evident in genus-level ordination analyses. Moreover, gut
dysbiosis might not necessarily be present in all HIV-1-infected
subjects, but instead, be more frequently found in subjects with
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Fig. 1 Low-microbial gene richness is linked to HIV-1-mediated immune suppression. a Probability density function showing a bimodal
distribution of the study population according to gut microbial gene richness, i.e., the number of different microbial genes observed in each
individual at 10 million sequence downsampling size. The local minimum between the two modes (621,808 genes in this analysis) was used as
a threshold to define people with high (HGCs) and low-gene counts (LGCs). b The bimodal distribution became even more aparent when
KEGG enzyme richness, i.e., number of different enzymes found in the KEGG database was used. ¢ HIV-1-infected subjects (n = 156) were more
likely to be classified as LGCs; in comparison, most HGCs were HIV-1 negative. d The association between LGC and HIV-1 infection remained
when only men-who-have-sex-with-men (MSM) were analyzed (n = 100). e HIV-1 phenotypes associated with immune deterioration were
enriched in LGCs. f Subjects with lower nadir CD4+ counts were gradually more likely to be classified as LGCs. Late presenter, subjects with
CD4+ T-cell counts <200 cells/mm? at diagnosis and no ART exposure; discordant, with HIV-1 RNA <50 copies/mL and CD4+ T-cell counts
<300 cells/mm?3; concordant, with HIV-1 RNA levels <50 copies/mL and achieving CD4+ T-cell counts >500 cells/mm?; early treated, HIV-1-
infected subjects who initiated ART during the first 6 months after the infection, achieving HIV-1 RNA levels <50 coples/mL during at least
3 months and with no HIV 1 RNA blips after achlevmg HIV-1 RNA <50 copies/mL; ART naive, with HIV-1 RNA >10,000 copies/mL, nadir CD4+ T-
cell counts >500 cells/mm? and no ART exposure; viremic controller, with HIV-1 RNA between 50 and 2000 copies/mL during at least 2 years in
the absence of ART; elite controller, subjects with HIV-1 RNA <50 copies/mL during at least 2 years in the absence of ART

higher degree of immune deficiency, longer duration of HIV-1
infection or late presentation, S freviously suggested by using
markers of immune activation.*’~* Thus, it may be oversimplistic
rendering HIV-1 vs. non-HIV-1 comparisons.

A highly consistent feature of the gut microbiomes of people
with different gut inflammatory diseases in studies using shotgun
metagenomics is a reduction in microbial gene richness,'> %
which allows classifying individuals as having high-gene count

o
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(HGC) or low-gene counts (LGC). Such studies have shown that
subjects with LGC consistently display changes in their gut
microbiomes that most authors would accept as “dysbiosis”,
including increases in Proteobacteria and other microbial species
able to thrive in the presence of gut inflammation. In the present
study, we used fecal whole metagenome shotgun sequencing and
direct short-chain fatty acid (SCFA) measurements to characterize
the nature and possible mechanisms driving gut microbiome

Mucosal Immunology (2019) 12:232-246
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Table 2. Factors associated with low-microbial gene counts®
Univariate Multivariate
OR 95% Cl p Value OR 95% ClI p Value

Age Per each additional year 1.03 [1-1.07] 0.074 - - -
Gender Female 1

Male 0.32 [0.10-0.82] 0.028 - - -

Transgender woman - - -
Ethnic Group Caucasian 1 1

Hispanic-Latin 0.27 [0.11-0.64] 0.003 0.26 [0.10-0.67] 0.006

Asiatic and others® - - - - - -
HIV-1 risk group Non-MSM 1 1

MSM 0.17 [0.06-0.39] <0.001 0.20 [0.07-0.51] 0.002
HIV-1 status Negative 1

Positive 3.68 [1.57-8.89] 0.003 - - -
Nadir CD4+ T-cell count, cells/mm? HIV-1 negative 1 1

>500 2.04 [0.75-5.74] 0.169 213 [0.73-6.45] 0.173

200-500 3.09 [1.19-8.37] 0.006 292 [1.03-8.62] 0.047

100-200 6.55 [1.86-27.71] 0.023 5.55 [1.40-26.15] 0.020

<100 26.18 [4.40-506.6] 0.003 14.00 [2.02-288.71] 0.023
@Full dataset analysis, n = 156 subjects
PAnalysis does not apply because all subjects are included in the same response group
MSM men-who-have-sex-with-men

shifts in HIV-1 infection, identify clinical factors associated with
them, and explore their potential consequences on microbial
pathogenesis and human health.

RESULTS

Study subjects

The study included 156 individuals: 129 (82.7%) HIV-1-infected
with different immune phenotypes and 27 (17.3%) not infected
with HIV-1 (Table 1). Participants were mostly MSM (64%) of
Caucasian ethnicity (79%), with median 43 years of age, and
median body mass index (BMI) of 23.8kg/m? HIV-1-infected
subjects were recruited from two tertiary HIV-1 clinics in
Barcelona, Spain. Most HIV-1-negative controls were enrolled
from a prospective cohort of HIV-negative MSM who attend
quarterly medical and counseling visits at a community-based
center in Barcelona.***

Microbial gene richness

Microbial gene richness values obtained by whole fecal metagen-
ome shotgun sequencing followed a bimodal distribution across
the study cohort (Fig. 1a). Using 10 million (M)-sequence
downsampling, the local intermodal minimum was 621,808 genes.
This threshold was used to classify participants as having HGC (n
=53) or LGC (n=103), as in ref. 18. Subjects in the HGC group
also had higher enzyme and metabolic pathway richness than
LGCs (Fig. 1b, Supplementary Table 1). Gene richness measure-
ments were not biased by sequencing yield (Supplementary Fig. 1)
or gene catalog used (Supplementary Fig. 2).

Factors associated with microbial gene richness

HIV-1-infected subjects were more likely to be LGCs than HIV-1-
negative controls, regardless of whether all subjects (71.3% vs.
40.7%, p = 0.001, Fig. 1c) or only MSM (59.7% vs. 34.8%, p = 0.055,
Fig. 1d) were considered.”’ Subjects with LGCs were more
frequently observed in individuals with more advanced HIV-1
disease stages (p = 0.009, Fig. 1e) and in gradually lower nadir CD4
+ T-cell count ranks (p = 0.002, Fig. 1f). In addition, LGC subjects

Mucosal Immunology (2019) 12:232-246

were more likely to be older (p =0.024), Caucasian (p =0.013),
non-MSM (p < 0.001) and women (p = 0.020) than HGC individuals
(Table 1). Average microbial gene richness was also significantly
lower in HIV-1-infected subjects, particularly in those with more
advanced disease, immune discordant response, and lower nadir
CD4+ T-cell counts (Supplementary Figs. 3 and 4, p <0.05 in all
cases). Neither current CD4+ T-cell counts nor CD4% were
associated with microbial richness after stratifying for nadir CD4
+ T-cell counts (Supplementary Fig. 5). Similarly, we did not
observe an effect of ART or previous antibiotic exposure on gene
richness after stratifying for nadir CD4+ T-cell counts (Supple-
mentary Figs. 6 and 7).

Dose-dependent association between LGC and nadir CD4+ T-cell
counts

In multivariate regression (Table 2) there was a dose-effect
relationship between nadir CD4+ T-cell counts and microbial
gene richness. Subjects with nadir CD4+ T-cell counts between
200 and 500 cells/mm? (OR=2.9 [95 CI: 1.1-8.6], p =0.047), 100
and 200 cells/mm? (OR = 5.5 [95 ClI: 1.4-26.1], p = 0.020) and <100
cells/mm?® (OR =14.0 [95 CI: 2.02-288.7], p =0.023) were more
likely to be LGC than HIV-negative controls. Additional factors
independently associated with LGC were HIV-1 risk group (OR for
MSM vs. non-MSM = 0.2 [95 Cl: 0.1-0.5], p = 0.002) or ethnicity (OR
for Hispanic vs. Caucasian=0.3 [95 Cl: 0.1-0.7], p =0.006). As
expected, time between the study baseline and dates of HIV-1
diagnosis and nadir CD4+ T-cell counts were also longer in
subjects with lower nadir CD4+ T-cell counts (Supplementary
Fig. 8).

Changes in microbial species composition
Fecal microbiomes clustered by gene richness category rather
than by HIV-1 serostatus (Fig. 2a, Supplementary Fig. 9). Micro-
biomes from HGC subjects were more similar among themselves
than those from LGC individuals, which displayed many different
configurations.

The microbial species composition of HGC and LGC indivi-
duals was remarkably different (Fig. 2b, ¢, Supplementary Figs.
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Fig. 2 Microbial species associated with gut microbial gene richness. a Nonmetric multidimensional scaling plot based on Bray—Curtis
microbiome distances showing more different microbiome configurations in subjects with LGCs than in HGCs. Dot sizes are proportional to
microbiome gene richness. Ellipses represent 95% confidence intervals. Microbial species associated to an environmental vector of more than
0.35 NMDS coordinate length are shown. b Microbial species positively (green) and negatively (red) correlated with gene richness
(Benjamini-Hochberg corrected Spearman Rank correlation p value < 0.05) in MSM (n = 100) and non-MSM (n = 56) subjects. Most microbial
species positively correlated with richness were GRAM-positive, whereas most species negatively correlated with richness were GRAM-
negative (V is for “variable” GRAM staining). Blue squares on the left handside summarize some of the main microbial metabolism products of
each species, including the short-chain fatty acids (SCFAs) acetate (Ace), butyrate (But), formate (For), and propionate (Pro); the acids lactate

(Lac) and succinate (Suc); the gas methane (CH4), and the alcohols ethanol (Eth) and methanol (Met);

* is for unknown. ¢ Random forest

analysis showing the contribution of each microbial species to overall gene richness. In green, red, and gray, respectively, microbial species
enriched in HGCs, LGCs and not significantly enriched in either category. AUC area under the curve

10-14). Gut microbiomes of HGC subjects were enriched in
methanogenic archaea (Methanobrevibacter spp. and Methano-
sphaera stadtmanae), sulfate-reducing bacteria (Desulfovibrio
piger and Desulfovibrio desulfuricans) (Supplementary Fig. 14),
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and butyrate-producing species from the Ruminococcaceae
(Subdoligranulum spp.) and Lachnospiraceae (Butyrivibrio cross-
otus, Coprococcus comes, Conus catus) families (Fig. 2). In
addition, subjects with HGCs showed enrichment in Eubacterium
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siraeum, Eubacterium eligens and species from Dorea genera
(Dorea formicigenerans and Dorea longicatena), as well as in
cellulolytic bacteria from the Ruminococcus genus (Ruminococ-

cus flavefaciens).
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Fig. 3 Functional unbalance and microbial adaptation to oxidative stress. a Microbial functions significantly correlated with gene richness
(Benjamini-Hochberg-corrected Spearman Rank correlation p value < 0.05) in both MSM and non-MSM subjects. b Differential enrichment in
microbial enzymes involved in metabolism of reactive oxygen species (ROS) in LGCs (upper horizontal bars) vs. HGCs (lower horizontal bars),
and contribution of microbial species to such enrichment. The plot shows significant differences in ROS gene enrichment between LGC and
HGC (diamond, Wilcoxon test statistic) using a false discovery rate p value threshold of 0.05. Microbes are colored by phyla, i.e., Bacteroidetes
in purple; Firmicutes in blue; Proteobacteria in red, Others in gray. ¢ Abundance of microbial enzymes involved in ROS metabolism by nadir
CD4+ T-cell count categories. G6PHD, glucose-6-phosphate dehydrogenase; 6pgd, 6-phosphogluconate dehydrogenase; gr, glutatione
reductase; gpx, glutathione peroxidase; ahpc, peroxiredoxin AhpC; bcp, peroxiredoxin BCP; tpx, atypical 2-Cys peroxiredoxin; cat, catalase;
4sod2, superoxide dismutase Fe-Mn; msra, methionine sulfoxide reductase A

hydrogenotrophica, Blautia producta, Marvinbryantia formatexigens,
and Eubacterium limosum) (Supplementary Fig. 14); as well as in
Proteobacteria (Supplementary Fig. 13), including the Betaproteo-
bacteria Sutterella wadsworthensis.

Interestingly, some of the best-known butyrate-producing
microbial species®*” were present at significant amounts across
the whole gene richness continuum. Whereas Faecalibacterium
prausnitzii was more abundant with higher gene richness,
Roseburia intestinalis and Roseburia inulinivorans were more
prevalent with lower gene counts, and Eubacterium rectale was
homogeneously distributed across gene richness.

Gene richness and inflammation

Individuals with lower gene richness had higher levels of systemic
inflammation (IL-6, p =0.020) (Supplementary Fig. 15). HIV-1
infection and particularly low nadir CD4 T-cell counts were also
significantly associated with higher levels of systemic inflamma-
tion (IL-6 and IP-10), and enterocyte damage (intestinal fatty acid-
binding protein (IFABP)) (Supplementary Fig. 16).

Diet, richness, and microbial composition

Microbial gene richness directly correlated with the dietary intake
of monounsaturated fats, carotenoids, iron, fiber and Vitamin A
(Supplementary fig. 17a). Dirichlet-multinomial regression identi-
fied a positive association between iron intake and levels of
Prevotella copri, E. eligens, Ruminococcus bromii and Ruminococcus
callidus, and a negative association with Bacteroides ovatus.
Ethanol consumption was negatively associated with Faecalibac-
terium prausnitzii (Supplementary Fig. 17b). There was a positive
correlation between fiber consumption and the overall abundance
of methanogenic archaea, including species from both Methano-
brevibacter and Methanosphaera genera (Supplementary Fig. 18).
However, in a sensitivity analysis only iron intake remained
associated with LGCs in a multivariate regression model (Supple-
mentary Table 2).

Shifts in microbial functional pathways

Consistent with the stark differences in microbial species
composition, key microbial functional pathways were also strongly
correlated with gene richness, both in MSM and non-MSM (Fig. 3a).
Functional differences between HGC and LGC (Supplementary
material 2) indicated that microbiomes of both groups were able
to use different energy resources and might provide different
metabolic end products to their hosts.

Microbiomes from HGC subjects were enriched in genes
involved in methanogenesis; biosynthesis of indole derivatives
and carotenoids; and metabolism of pyruvate, fatty acids,
glycerolipids, and glycerophospholipids, the latter needed for
the biosynthesis of lipid components of the bacterial cell
wall. They were also enriched in pathways related to microbial
growth, replication and protein production, i.e, DNA replication,
aminoacyl-tRNA biosynthesis, ribosome, purine, and pyrimidine
metabolism, and mismatch, base and nucleotide excision
repair.

Whereas HGCs were enriched in genes coding for enzymes
implicated in glucose, starch, and cellulose utilization, LGC
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microbiomes were enriched in genes involved in the metabolism
of fructose, and a wide range of disaccharides (sucrose, maltose,
cellobiose, and lactose) and polysaccharides (pectin, galactan, and
amylopectin). LGCs were also characterized by an enrichment of
genes involved in biosynthesis of lipopolysaccharide (LPS), the
main component of the outer membrane of Gram-negative
bacteria. Tryptophan-degrading enzymes such as tryptophanase
and aromatic-L-amino-acid decarboxylase, which catalyze the
degradation of tryptophan to indole and tryptamine, respectively,
were increased in LGCs.

Contribution of microbial species to functional shifts

In an integrative taxonomic and functional comparative analysis to
estimate taxon-level contributions to functional shifts (FishTaco),*®
LGCs were enriched in genes involved in reactive oxygen and
nitrogen species (ROS/RNS) metabolism, encoded by different
Bacteroides and Proteobacteria species (Fig. 3b, Supplementary
Fig. 20). Moreover, ROS/RNS enzymes were significantly more
abundant as microbial gene richness (Supplementary Figs. 19 and
21) and nadir CD4+ T-cell counts (Fig. 3¢, Supplementary Fig. 22)
decreased, in a dose-effect relationship.

Bacterial antioxidant enzymes enriched in LGCs included redox
enzymes such as thioredoxin reductase and peroxiredoxines from
the thioredoxin system; glutathione peroxidase and reductase;
and glucose  6-phosphate  dehydrogenase  and 6-
phosphogluconate dehydrogenase, the latter involved in the
oxidative phase of the pentose phosphate pathway. Catalase and
superoxide dismutase are ROS-scavenging enzymes that directly
eliminate non-radical and radical ROS, respectively. RNS metabo-
lism included enzymes involved in dissimilatory nitrate reduction,
nitrite detoxification, regulation of nitrate/nitrite responses and
nitrogen availability, molybdate transport and dimethyl sulfoxide
(DMSO0), trimethylamine N-oxide (TMAO), and tetrathionate
respiration. RNS and their derivatives, as well as S- and N-oxides
and tetrathionate, are used by Proteobacteria and other bacteria
enriched in LGC as alternative electron acceptors in anaerobic
respiration.*®

LPS biosynthesis in LGC subjects was also mainly encoded by
Bacteroidetes and Proteobacteria (Supplementary Fig. 23). A
comprehensive list of all functional shifts identified by FishTaco
is available (Supplementary material 3).

Differences in fecal SCFA content

We then measured the abundance of acetic, butyric, propionic,
valeric, isobutyric, and isovaleric acids in stool samples. Overall,
the molar ratio of acetic:butyric:propionic acids was approximately
3:1:1, consistent with previous studies.”® Concentrations of butyric
and propionic acids were significantly higher in LGCs, whereas
isovaleric acid increased in HGCs (Fig. 4). The acetic/butyric ratio
increased in HGC individuals, which could indicate that the
contribution of acetate to butyrate formation is higher in LGCs. No
significant SCFA variations were found between nadir CD4+ T-cell
categories. Butyric acid levels were significantly correlated with
abundance of Roseburia intestinalis and Roseburia inulinivorans,
which are known to be able to generate large amounts of butyrate
from acetate consumption.*’”*"
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Bacterial virulence factors and antimicrobial resistance

Microbial shifts associated with immune deficiency also implied
increases in bacterial virulence factors as well as changes in the
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gut microbial resistome (Supplementary Figs. 24 and 25). By
FishTaco,”® subjects with LGCs were enriched in intracellular toxins
(tccC), and toxins able to damage cell membranes (hlylll, slo, rtxA1,
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Fig. 4 Fecal short-chain fatty acid (SCFA) levels. a Fecal butyric and propionic acid levels were significantly higher in subjects with low-gene

counts (LGC), whereas isovaleric acid levels were higher in subjects with high gene counts (HGC); no significant differences in SCFAs were

observed between different nadir CD4+ T-cell count categories. b The acetyc/butyric ratio was significantly higher in HGCs than in LGCs, but

was not significantly different by nadir CD4+ T-cell counts. ¢ Butyrate levels were positively correlated with abundance of Roseburia intestinalis

and Roseburia inulinivorans, two well-known butyrate producers. Only statistically significant correlations are shown (p < 0.05). d Abundance of
4R. intestinalis and R. inulinivorans across microbial gene richness values (HGC in green, LGC in orange). (p < 0.05)
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dietary organic sulfides, which are oxidized by ROS. The N-oxide trimethylamine N-oxide (TMAO) is generated by oxidation of diet-derived
tertiary amines like trimethylamine (TMA), either by hepatic flavin-containing monooxigenases or by the direct effect of ROS. TMAO
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tlyC, and plcC) and the extracellular matrix (cloSI, hya, and NEU1).
Similarly, they were also enriched in a number of enzymes
involved in antimicrobial resistance (Supplementary Fig. 24),
including single antimicrobial resistance genes like Fsr, involved
in biofilm formation,*> and genes encoding for multidrug efflux
pumps.>® The latter comprises ATP-binding cassette (ABC)
transporters (ABC-2 type permease), and genes from the four
families of secondary multidrug transporters, i.e., major facilitator
superfamily (YebQ, Blt, Mef, and TetA), small multidrug resistance
(SMR: TC.SMR, SugE), multidrug and toxic compound extrusion
(MATE: TC.MATE), and resistance-nodulation-cell division (EmrAB-
TolC; AcrA-TolC, MdtA, and MacA). Gut dysbiosis was also
associated with increases in genes encoding for other bacterial
survival mechanisms like the multiple peptide resistance factor
(MprF), which confers resistance to antimicrobial peptides,>* and
metal ion efflux systems like the CusCBA copper efflux complex.>®

In a targeted exploration of virulence and resistance factors
included, respectively, in the virulence factor database (VFDB)
and the comprehensive antimicrobial resistance database (CARD)
curated databases, subjects with nadir CD4+ T-cells <100 cells/
mm?> had higher counts of important bacterial virulence genes,
such as catalase, ClpC ATPase,”® Type IV pili,>” type lll secretion
system,*® HSI-1,>° and Flagella®® (Supplementary Fig. 26). Similarly,

SPRINGER NATURE & SOCIETY FOR MUCOSAL IMMUNOLOGY

higher antimicrobial resistance gene copies were observed in
subjects with LGCs, as well as in individuals with progressively
lower nadir CD4+ T-cell counts (Supplementary Fig. 25). While
subjects with HGCs were enriched in genes involved in self-
antibiotic resistance, which control the overgrowth of other
bacterial species®’ individuals with LGCs were enriched in genes
associated with beta-lactam, lincosamide, tetracycline, and macro-
lide resistance.

DISCUSSION

Using shotgun metagenomics and direct measurements of fecal
SCFA levels, we found evidence of a strong, dose-dependent
association between reductions in gut microbial gene rich-
ness,'®'® and nadir CD4+ T-cell counts, which reflected complex
compositional and functional changes occurring in the gut
microbiome alongside HIV-1-associated immune deficiency. The
observed reductions in oxygen-sensitive, Gram-positive syntrophic
gut microbes like methanogenic archaea, together with increases
in ROS/RNS-resistant generalists, like Bacteroides, Parabacteroides,
and Proteobacteria, suggests adaptation of the gut microbial
ecosystem to oxidative stress as a putative, not necessarily
exclusive, driver of such changes.
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HIV-1 infection is a well-established source of oxidative stress. It
triggers gut inflammation by damaging the intestinal epithelial
lining and submucosal and lymphoid tissues, allowing enteric
adenovirus expansion,®>®> NF-kB activation,”® and release of
cytokines and chemokines,*® arachidonic acid®* and neopterin,®
which induce migration and accumulation of neutrophils and
macrophages in gut tissues. Antimicrobial ROS and RNS are
produced by the NADPH-oxidase in neutrophils and inducible NO-
synthases in macrophages. Production of free radicals is further
enhanced by the effect of HIV-1 proteins,®®™*® microbial products
like LPS,%¥7% and HIV-1-associated mitochondrial dysfunction.”’”?
Increased residency times and reduced apoptosis of macrophages
in the context of gut dysbiosis extend the production of ROS/RNS
over time.”® The persistent accumulation of free radicals ultimately
overwhelms antioxidant defenses in host cells,’*”> and hampers
the growth of microbes deficient in ROS/RNS-resistance
mechanisms.**7¢77

An oxidative environment thus favors the growth of commen-
sals with antioxidant capabilities and higher metabolic versati-
lity.*>"87° Bacteroides spp. or Proteobacteria, for example, are
ROS/RNS-resistant bacteria able to use a wide range of final
electron acceptors during anaerobic respiration, including nitrate,
TMAO, DMSO and tetrathionate.®® In our study, genes encoding
for enzymes implicated in the utilization of the latter compounds
were enriched in LGC individuals, and were mainly encoded by
Bacteroides and Proteobacteria (Fig. 5).

Of note, alongside with pro-inflammatory Proteobacteria like
Sutterella wadsworthensis,”® subjects with LGCs also had increased
butyrate and propionate levels in direct fecal SCFA measurements.
Bacteroides spp. are propionate producers2’ which may explain
the increased fecal propionate levels. However, butyrate results
might seem more counterintuitive given the anti-inflammatory
properties of butyrate.®? Total fecal SCFAs measurements must be
interpreted with caution because they neither measure direct
SCFA production nor colonocyte uptake®® Overall, our findings
support the notion that shifts in hydrogenotrophic microbes in
the context of exogenous gut inflammation may modify SCFA
metabolism in vivo.

Hydrogenotrophic microbes, ie., methanogenic archaea,
sulfate-reducing bacteria and acetogenic bacteria, compete for
gut microbial hydrogen. Methanogenic archaea are promoted by
fiber consumption® possibly because it leads to increased
hydrogen production by primary fiber degraders. In our study,
fiber consumption was indeed associated with abundance of
methanogenic archaea. Methanogenic archaea, however, are also
highly intolerant to oxygen®® being outcompeted by alternative
hydrogenotrophic microbes like acetogenic bacteria in oxidative
environments.

In this study, subjects with LGCs had lower amounts of
methanogens and sulfate-reducing bacteria. As seen elsewhere,3¢
methanogenic archaea were, indeed, negatively correlated with
fecal butyrate concentrations. In contrast, acetogenic bacteria
were more abundant in LGC subjects. Acetogens compete with
methanogens for hydrogen and are more tolerant to oxidative
stress and oxygen fluxes.*>®”"®° They produce large quantities of
acetate through acetogenesis,®® which is not only a source of
energy for gut epithelial cells, but also contributes to butyrate
formation by butyrate-producing bacteria like Roseburia
spp.229°! Therefore, we suggest that, in the absence of
methanogens, acetogenic bacteria increase their contribution to
interspecific H, transfer. This increases butyrate production by
acetate-consuming butyrogenic bacteria like Roseburia spp., as
evidenced by lower acetate:butyrate ratios in LGCs, also observed
in previous studies.”

The strong association between intestinal microbial shifts and
nadir CD4+ counts found in this study may be of importance in
HIV medicine. Nadir CD4+ T-cell counts decrease with longer
times since HIV-1 diagnosis and thus reflect the extent of HIV-1-
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induced immune damage, being a major surrogate marker of
excess mortality, systemic inflammation, and clinical complications
in chronically HIV-1-infected subjects.'™®® Increases in genes
implicated in LPS biosynthesis, bacterial virulence factors, and
changes in the gut bacterial resistome, including depletion in
genes involved in self-antibiotic resistance, and enrichment in
genes associated with beta-lactam, lincosamide, tetracycline, and
macrolide resistance in subjects with LGCs, could be related to the
increased susceptibility to bacterial infections seen in subjects
with severe immune suppression.' %3

Importantly, the compositional and functional shifts associated
with gene richness in our study were highly consistent across HIV-
1 transmission groups, ruling out confounding by HIV-1 risk
group,*’ and have been described in other diseases characterized
by gut inflammation,'®"® such as obesity and inflammatory bowel
disease. This suggests that gut microbiome shifts observed in our
study are not necessarily unique to HIV-1 infection, but instead,
share important characteristics with those seen in other diseases
featuring gut inflammation. Moreover, the existence of gut
microbiome shifts in some but not all HIV-1-infected subjects,
particularly in those with higher immune damage in the past,
suggests that gut microbiome testing has the potential to become
a useful clinical tool to identify which individuals are more likely to
develop gut microbiome-related diseases, including those asso-
ciated with inflammaging and accelerated aging, impaired
immune reconstitution, and severe bacterial infections. Prospec-
tive cohort studies linking gut microbiome data with AIDS and
non-AIDS-related diseases are thus essential to validate and
extend our findings. Such studies are critical to evaluate
potentially unmeasured confounders, limit information recall
biases, and include comprehensive information on other drugs
that might modify the microbiome and might have not been
evaluated herein. In addition, the use of colonic biopsies might
provide further insights into the factors that condition gut
microbial shifts during HIV-1 infection. In conclusion, low nadir
CD4+ T-cell counts, rather than HIV-1 serostatus per se, predict
the presence of gut dysbiosis in HIV-1 infected subjects. None of
the compositional and functional shifts associated with such
dysbiosis seem to be HIV-specific; instead, they are similar to those
found in other diseases featuring gut inflammation, suggesting
adaptation to oxidative stress as an important, not necessary
exclusive, driver of gut microbial shifts in HIV-1 infection.

METHODS

Study design

This was a cross-sectional study in HIV-1-infected subjects with
different virologic and immunologic phenotypes and HIV-negative
controls. Comprehensive details of the cohort design and
characteristics have been published elsewhere.*' Study partici-
pants were recruited in Barcelona, Catalonia, Spain, between
January and December 2014. HIV-1 infected subjects were
recruited from the HIV Clinics of the tertiary care hospitals
Germans Trias i Pujol and Vall d’'Hebrén. HIV-1-negative controls
were mainly recruited from a prospective cohort of HIV-negative
MSM at risk of becoming infected by HIV-1,** who attend quarterly
medical and counseling visits including HIV-1 testing (Alere
Determine HIV-1/2 Ag/Ab Combo, Orlando, FL) at, a community-
based center in Barcelona.”® Additional controls were HIV-
negative partners from HIV-1-infected subjects attending the HIV
clinics.

The study included participants between 18 and 60 years and
BMI within 18.5 and 30. Exclusion criteria were: (a) any gross
dietary deviation from a usual diet, or any specific regular diet, i.e.,
vegetarian, low-carbohydrates, etc.; (b) antibiotic use during the
previous 3 months (with the exception of late presenters, who
could receive antibiotics to treat opportunistic infections); (c)
pregnancy or willingness to become pregnant; (d) current drug
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consumption or alcohol abuse; (e) any chronic digestive disease
such as peptic ulcer, Crohn’s disease, ulcerative colitis, or coeliac
disease; (f) any surgical resection of the intestines except for
appendectomy; (g) any autoimmune disease; and (h) any
symptomatic chronic liver disease or presence of hepatic
insufficiency defined as a Child-Pugh C score.

HIV-1-infected subjects were classified into the following seven
mutually excluding categories based on their virological and
immunological phenotype: (a) elite controllers: HIV-1 RNA <50
copies/mL during at least 2 years in the absence of ART; (b) viremic
controllers: HIV-1 RNA between 50 and 2000 copies/mL during at
least 2 years in the absence of ART; (c) early-treated: ART initiation
during the first 6 months after HIV-1 infection, HIV-1 RNA levels
<50 copies/mL during at least the 3 last months and with no HIV-1
RNA blips after achieving HIV-1 RNA <50 copies/mL; (d) ART-naive:
HIV-1 RNA >10,000 copies/mL, nadir CD4+ T-cell counts >500
cells/mm? and no ART exposure; (e) immune concordant: HIV-1
RNA levels <50 copies/mL, and CD4+ T-cell counts >500 cells/
mm?3 during at least 2 years; (f) immune discordant: HIV-1 RNA <50
copies/mL and CD4+ T-cell <300 cells/mm? during at least 2 years
under ART; and (g) late presenters: CD4+ T-cell counts <200 cells/
mm? at HIV-1 diagnosis and no ART exposure.

Data collection

Clinical and laboratory data were collected in a centralized
database specifically designed for this study (OpenClinica, 2015
OpenClinica, LLC) using a standardized questionnaire.*'

Dietary evaluation

Study participants received a thorough dietary and nutritional
assessment by a specialized dietitian/nutritionist using two
standardized and validated questionnaires:

a. A prospective dietary nutrient survey aimed at recording, as
precisely as possible, any food, supplement or liquid intake
during 3-5 consecutive days, including at least one week-
end day.

b. A second questionnaire was a recall of food portions taken
per week, on average, over the last year. To a great extent,
this questionnaire is equivalent to the one used by the
Health Professionals Follow-up Study of the Harvard School
of Public Health (http://www.hpfstudy.org),”* but has been
adapted to include local dietary products and exclude items
that are almost not consumed at all in our environment (e.g.,
peanut butter, etc).

After completion of both questionnaires, the study subject
reviewed them with the study dietitian. Individual nutritional data
was standardized by energy intake by fitting a linear model and
taking residuals as new nutritional values (mean =0 and SD = 1)
This ensured that amounts of nutrients were comparable between
subjects with different total energy intake. A Dirichlet-multinomial
distribution was assumed for species counts to account for data

overdispersion, as suggested previously.*'

Fecal DNA extraction

Study participants collected fecal samples at home in sterile fecal
collection tubes the same day or the day before their medical
appointment, before the proctology exam, and following pre-
specified standard operating procedures. If required, samples were
stored at 4 °C overnight until DNA extraction. Total DNA contained
in aliquots of ~200 mg of each fecal sample was extracted using
the PowerSoil DNA Extraction Kit (MO BIO Laboratories, Carlsbad,
CA, USA) and then cryopreserved at —80 °C until sequencing.

Microbial DNA sequencing i
Whole fecal DNA was fragmented with the Nextera-XT Illumina
kit. One library of approximately 300-basepair-clone insert size
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was constructed for gach sample. Total fecal DNA was sequenced
in an lllumina Hi-Seq platform at the Institut de Medicina Predictiva
del Cancer (IMPPC), Badalona, Spain.

Sequence quality assessment

Sequence quality was assessed using the FastQC software.” Total
sequences were filtered by length and quality using Trimmo-
matic®® ensuring a minimum base quality of Q30 for both leading
and trailing bases, a minimum length of 75 basepairs and a
minimum sequence quality average of Q20 for 30 basepair sliding
windows across sequences. Human contamination was removed
by mapping filtered sequences against the human genome using
the bwa®® software and discarding reads that uniquely aligned to
the human reference with mapping quality higher than Q20. After
filtering, a mean (standard deviation) of 31.0 (9.3) million
sequences were obtained for each individual.

Taxonomical classification
The Metaphlan v2 software'® was used to infer the microbial
composition of each stool sample.

0

Microbial gene richness assessment

Filtered sequences were mapped against the integrated gene
catalog (IGQ)'°" using the bwa software.’® Unique alignments with
a minimum quality of Q20 were selected for subsequent analyses.
An average of 24.8 million sequences (~80 % of total filtered
sequences) mapped against the IGC reference catalog. To be able
to compare the microbial gene content across samples we used a
downsampling size of 10 million aligned sequences (Supplemen-
tary Fig. 2).

Gene richness was measured as the total number of different
genes present in the sample regardless of their abundance and
length, as described previously.'® A minimum of one filtered
mapped sequence was set to consider the presence of a gene. The
copy number of each gene was estimated by dividing the total
reads mapping to a gene divided by the gene's length. Gene
relative abundance was measured as its copy number divided by
the sum of the total gene copies in the sample. As in previous
studies,’® gene richness followed a bimodal distribution in a
probability density function. The local minimum of the density
function for gene richness distribution between the two modes, was
considered the threshold value to classify individuals in two groups
according to their microbial gene richness content: HGC and LGC.

To rule out possible biases due to the use of an external
reference catalog not necessarily enriched in microbiome
sequences from PLWH, we also constructed our own microbial
gene catalog by de novo assembly and annotation of metage-
nomic sequences using the MOCAT2 pipeline.'® This catalog was
used to confirm the gene richness categorizations obtained using
the IGC catalog.'"

Microbial functional profile

Genes found in metagenomes downsampled at 10 M sequences
were associated to one or multiple KEGG categories according to
the IGC reference database.’®' To measure KEGG abundances, all
genes associated to the same KEGG category were collapsed and
their copy numbers were summed. If a gene was associated to
more than one KEGG category, all categories were considered
separately. The relative abundance of KEGG categories was
measured as in the relative gene abundance approach detailed
above. To analyze the metabolic pathways represented in all
samples, we fed the HUMANN pipeline'® with the KEGG copy
number table. The HUMANN output included the relative
abundances of metabolic modules and pathways for each subject.
KEGG functions that were not associated to prokaryotic or
archaeal metabolism according to KEGG catalog information'%*
were manually filtered out, to ensure that only microbial functions
were analyzed.
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Contribution of microbial species to functional shifts
Bidirectional imbalances in microbial enzyme abundance between
HGC and LGC groups were identified using the FishTaco
software,*® which also estimates the contribution of specific
microbial species to such imbalances. The genomic content of the
member species was inferred de novo by coupling the initial
taxonomic and functional abundance profiles. Taxonomic profiles
were generated considering only microbial species present in at
least 5% of all patient samples. A false discovery rate threshold g
<0.05 was used to correct for multiple comparisons. Functional
unbalances of interest were plotted using the FishTacoPlot R
package.

Microbial virulence factors and antimicrobial resistance

To further characterize the presence of bacterial virulence factors
and antimicrobial resistance genes in subjects with and without
dysbiosis, we mapped 10 M randomly selected, quality-filtered,
sequence reads from each sample against the VFDB'® and the
CARD,' respectively. Gene copy number was measured as
described above.

Soluble markers of enterocyte integrity, bacterial translocation,
and systemic inflammation

Plasma samples were collected and cryopreserved at —80 °C until
quantification. Six different soluble plasma markers were mea-
sured in all study participants. Plasma levels of markers of
enterocyte damage (IFABP), microbial translocation (soluble CD14
(scCD14) and LPS binding protein (LBP)) and systemic inflamma-
tion (interleukin-6 (IL-6), C-reactive protein (CRP), and interferon-
gamma-inducible protein-10 (IP-10)) were analyzed using com-
mercial ELISA kits in accordance with manufacturer’s instructions
[IL-6: high sensitivity ELISA with signal amplification, BMS213HS,
eBioscience (San Diego, CA); sCD14: 0014-27 (ng/mL), Diaclone
(Besangon, France); IFABP: DuoSet ELISA development system (pg/
mL), R&D systems (Minneapolis, MN); CRP: KHA0031 (mg/mL),
Invitrogen (Carlsbad, CA); IP-10: 1P10-09 (pg/mL), Diaclone
(Besangon, France); LBP: KA0448 (ng/mL), Abnova (Taipei,
Taiwan)]. If plasma levels were above the upper detection limit,
the concentration considered was the maximum quantifiable
value, ie., the highest concentration included in the standard
curve.

Fecal short-chain fatty acid levels

Acetic, butyric, propionic, valeric, isobutyric, and isovaleric acids
concentrations were measured in 146 stool samples. Approxi-
mately ~100 mg of stool were suspended in sterile acidified water
(pH 2.5) at a final concentration of 100mg stool/mL and
vigorously vortexed at room temperature for 5 min until the stool
was completely homogenized. The homogenate was then
centrifuged at 13 K RPM for 3 min and transferred 500 pL of the
supernatant into a fresh microcentrifuge tube. Then 30 pL of 8 mM
2-methylvaleric acid (Sigma Aldrich) was added in ethyl acetate as
an internal standard and 500 uL of ethyl acetate to the super-
natant and vigorously vortexed this mixture for 10 min. These
extractions were centrifuged at 13 K RPM for 3 min and transferred
300 pL of the upper organic phase to a glass autosampler vial. The
SCFA were then analyzed on an HP6890 GC (Agilent) using a
Stabilwax column (30 m x0.32 mmID x 0.25 um df, Restek) and 1
L splitless injections. The oven temperature was as follows: 100 °C
for 2 min then increased by 25 °C/min to 200 °C for 1 min followed
by 250 °C for 1 min. The detector was an HP5973 MSD (Agilent).
We prepared standard solutions of acetic, propionic, isobutyric,
butyric, isovaleric, and valeric acids in acidified water and treated
them as described above.

Statistical analyses of the microbiome composition and function

Microbiome samples were clustered according to their species
composition using a nonmetric multidimensional scaling (NMDS)
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approach based on ecological distance matrices calculated by
Bray-Curtis dissimilarities, as implemented R (Vegan, metaMDS
and ggplot2 packages). NMDS ellipses were drawn based on a
confidence interval (Cl) of 0.95, and only species associated to an
environmental vector with a length higher than 035 were
represented.

The association between baseline variables and the HGC and
LGC categories was evaluated using the two-tailed Fisher’s exact
test or the Wilcoxon rank sum test, as needed. To determine
factors independently associated with LGC, we first fitted a
univariate logistic regression model including each baseline
variable showing a significantly different distribution between
HGC and LGC. Variables significantly associated with LGC in
univariate regression were then included in a multivariate logistic
regression analysis. If two variables were redundant or collinear
(e.g., MSM vs. non-MSM and gender) only one of them was
included in the multivariate regression analysis. Odds ratios and
95% Cls were used to evaluate the weight of each variable relative
to its reference.

Correlations between gene richness and other continuous
variables, including microbial species, metabolic functions, and
specific microbial enzymes were evaluated with the Spearman
rank correlation test. Differences between HGC and LGC groups in
abundance of microbial species, KEGG counts, antimicrobial
resistance and bacterial virulence genes were evaluated using a
Wilcoxon rank sum test. Differences in microbial species, functions
and enzymes by nadir CD4+ T-cell count categories were
evaluated using a Kruskal-Wallis test with post hoc comparison
tests as required. In all previous evaluations the
Benjamini-Hochberg correction was applied to avoid type | error
inflation due to multiple comparisons. A random forest analysis
was used to determine the relative contribution of each microbial
species associated with richness to the classification of subjects as
HGC or LGC. Area-under-the-curve values were used to compare
the classification accuracy of the different predictors in both
machine-learning approaches.

As in previous publications from our group,*' nutrient
consumption was standardized by energy intake by fitting a
linear model and taking residuals as new nutritional values.
Dirichlet-multinomial regression'®” was implemented to identify
the strongest relationships between nutritional standardized
nutrient intake and species abundance and variance, penalizing
weak associations using a penalized likelihood approach.*' In
addition, nutrients independently correlated with gene richness
were identified using Spearman correlation or Wilcoxon
Mann-Whitney nonparametric tests, as needed.

Ethics and community involvement

The study was reviewed and approved by the Institutional Review
Boards of the Hospital Universitari Germans Trias i Pujol (reference
PI-13-046) and the Hospital Vall d’'Hebrén (reference PR(AG)109/
2014). All participants provided written informed consent in
accordance with the World Medical Association Declaration of
Helsinki. The study concept, design, patient information and
results were discussed with the HIVACAT Community Advisory
Committee (CAC), who provided input on these aspects as well as
on the presentation and dissemination of study results.

Sequence and data availability
Raw Illumina MiSeq sequences and study metadata were
deposited in the National Center for Biotechnology Information -
NCBI repository (Bioproject accession number: PRINA307231, SRA
accession number: SRP068240).
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