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Genome-wide association and transcriptome
studies identify target genes and risk loci for
breast cancer
Manuel A. Ferreira et al.#

Genome-wide association studies (GWAS) have identified more than 170 breast cancer

susceptibility loci. Here we hypothesize that some risk-associated variants might act in non-

breast tissues, specifically adipose tissue and immune cells from blood and spleen. Using

expression quantitative trait loci (eQTL) reported in these tissues, we identify 26 previously

unreported, likely target genes of overall breast cancer risk variants, and 17 for estrogen

receptor (ER)-negative breast cancer, several with a known immune function. We determine

the directional effect of gene expression on disease risk measured based on single and

multiple eQTL. In addition, using a gene-based test of association that considers eQTL from

multiple tissues, we identify seven (and four) regions with variants associated with overall

(and ER-negative) breast cancer risk, which were not reported in previous GWAS. Further

investigation of the function of the implicated genes in breast and immune cells may provide

insights into the etiology of breast cancer.
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Breast cancer is the most commonly diagnosed malignancy
and most frequent cause of cancer-related mortality in
women1. Genome-wide association studies (GWAS) have

detected more than 170 genomic loci harboring common variants
associated with breast cancer risk, including 20 primarily asso-
ciated with risk of ER-negative disease2,3. Together, these com-
mon variants account for 18% of the two-fold familial relative risk
of breast cancer2.

To translate GWAS findings into an improved understanding of
the biology underlying disease risk, it is essential to first identify the
target genes of risk-associated variants. This is not straightforward
because most risk variants lie in non-coding regions, particularly
enhancers, many of which do not target the nearest gene4. To help
with this task, we recently developed a pipeline that identifies
likely target genes of breast cancer risk variants based on breast
tissue-specific genomic data, such as promoter–enhancer chro-
matin interactions and expression quantitative trait loci (eQTL)2.
Using this approach, called INQUISIT, we identified 689 genes as
potential targets of the breast cancer risk variants. However, it is
likely that at least some breast cancer risk variants modulate gene
expression in tissues other than breast, which were not considered
by INQUISIT; for example, breast cancer risk variants are enriched
in histone marks measured in adipose tissue2. On the other hand,
the immune system also plays a role in the elimination of cancer
cells5 so it is possible that some breast cancer risk variants influ-
ence the expression of genes that function in the immune system.

The first aim of this study was to identify additional likely
target genes of the breast cancer risk variants identified by the
Breast Cancer Association Consortium2,3 using information on
eQTL in multiple relevant tissue types: adipose, breast, immune
cells, spleen, and whole-blood. The second aim was to identify
previously unreported risk loci for breast cancer by formally
integrating eQTL information across tissues with results from
the GWAS2,3 using EUGENE, a recently described gene-based
test of association6,7, that is conceptually similar to other
transcriptome-wide association study (TWAS) approaches, such
as PrediXcan8. Gene-based analyses would be expected to
identify previously unreported risk loci if, for example, multiple
independent eQTL for a given gene are individually associated
with disease risk, but not at the genome-wide significance level
used for single-variant analyses.

Results
Predicted target genes of overall breast cancer risk variants.
Using approximate joint association analysis implemented in
GCTA9 (see Methods), we first identified 212 variants that were
independently associated (i.e. with GCTA-COJO joint analysis
P < 5 × 10−8) with breast cancer in a GWAS dataset of 122,977
cases and 105,974 controls2 (Supplementary Data 1). Of note, 20
of these variants reached genome-wide significance in the joint,
but not in the original single-variant, association analysis; that is,
they represent secondary signals that were masked by the asso-
ciation with other nearby risk variants, as described previously9.

We extracted association summary statistics from 117 published
eQTL datasets identified in five broad tissue types: adipose, breast,
individual immune cell types, spleen and whole-blood (Supple-
mentary Data 2). For each gene and for a given eQTL dataset, we
identified cis eQTL (within 1Mb of gene boundaries) in low
linkage disequilibrium (LD; r2 < 0.05) with each other, and with
an association with gene expression significant at a conservative
significance threshold of 8.9 × 10−10. We refer to these as “sentinel
eQTL”. The mean number of sentinel eQTL per gene ranged
from 1.0 to 2.9 across the 117 eQTL datasets considered, which
varied considerably in sample size and number of genes tested
(Supplementary Data 2).

When we intersected the list of variants from the joint
association analysis and the list of sentinel eQTL from published
datasets, we identified 46 sentinel risk variants that were in high
LD (r2 > 0.8) with one or more sentinel eQTL, implicating 88
individual genes at 46 loci as likely targets of breast cancer risk
variants (Supplementary Data 3 and 4). Twenty-five risk variants
had a single predicted target gene, 10 had two, and 11 had three
or more (Supplementary Data 5).

Of the 88 genes, 75 (85%) were identified based on eQTL
from whole-blood, 10 (11%) from immune cells (PEX14, RNF115,
TNNT3, EFEMP2, SDHA, AP4B1, BCL2L15, BTN3A2,
HIST1H2BL, SYNE1), and three (4%) exclusively from adipose
tissue (ZNF703, HAPLN4, TM6SF2) (Supplementary Data 4).
Only four sentinel risk variants were in LD with a sentinel eQTL
in breast tissue (for ATG10, PIDD1, RCCD1, and APOBEC3B);
all were also eQTL in whole-blood and immune cells. However,
it is noteworthy that an additional 29 sentinel eQTL listed in
Supplementary Data 3 had a modest, yet significant association
with the expression of the respective target gene in breast tissue
(GTEx V7, n= 251), suggesting that larger eQTL datasets of this
tissue will be informative to identify the target genes of sentinel
risk variants.

A total of 62 genes were included in the list of 925 targets
predicted in the original GWAS using INQUISIT2, while 26 genes
represent previously unreported predictions (Supplementary
Data 5). Regional association plots for these 26 genes are
presented in Supplementary Fig. 1, with three examples shown in
Fig. 1.

Directional effect of gene expression on breast cancer risk. For
the 88 genes identified as likely targets of breast cancer risk
variants, we studied the directional effect of genetically-
determined gene expression on disease risk, based on the senti-
nel eQTL that was in LD with the sentinel risk variant. For each
gene, we first determined whether the eQTL allele that was
associated with reduced breast cancer risk was associated with
higher or lower target gene expression. Of the 77 genes for which
this information could be obtained (detailed in Supplementary
Data 4), the protective allele was associated with lower expression
for 43 genes (e.g. GATAD2A, FAM175A, KCNN4, and CTB-
161K23.1) and higher expression for 28 genes (e.g. RCCD1,
ATG10, ELL, and TLR1) (summarized in Table 1 and Supple-
mentary Data 6). For the remaining six genes (ADCY3, AMFR,
APOBEC3B, CCDC127, HSPA4, and MRPS18C), conflicting
directional effects were observed across different tissues, and
so the interpretation of results is not straightforward.

Directional effect based on information from multiple eQTL.
In the previous analysis, the directional effect of gene expression
on disease risk was assessed based on a single eQTL at a time.
However, the expression of most genes is associated with
multiple independent eQTL, which may not have the same
directional effect on disease risk. To address this limitation,
we assessed if results from the single QTL analyses above were
recapitulated by considering information from multiple eQTL
using S-PrediXcan10. We applied this approach to the same
GWAS results2 and used transcriptome prediction models
from whole-blood, generated based on data from the Depression
Genes and Network study (n= 92211) and GTEx (n= 369). We
used SNP prediction models for gene expression in whole-blood
because most genes (75 of 88) were identified as likely targets
based on eQTL information from this tissue.

Results from this analysis are presented in Supplementary
Data 7. The predicted directional effect of gene expression
on disease risk was available in both the single eQTL and
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S-PrediXcan analyses for 48 of the 88 likely target genes. For 42
of those 48 genes (88%) the two predictions matched, supporting
a consistent directional effect across multiple eQTL of the
same gene. The inconsistent results observed for the remaining
six genes were likely caused by technical biases (possible
explanations in Supplementary Data 7). Similar findings were

obtained when considering whole-blood transcriptome
prediction models based on data from the GTEx consortium
(Supplementary Data 7). Overall, these results indicate very good
agreement between the directional effect of gene expression on
disease risk obtained using information from individual or
multiple eQTL.
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Target gene predictions supported by functional data. The 88
genes identified represent target predictions that should be
experimentally validated, as outlined previously12. To help
prioritize genes for functional follow-up, we identified a subset for
which publicly available functional data supported the presence of
either (i) chromatin interactions between an enhancer and the
gene promoter4,13–15; or (ii) an association between variation in
enhancer epigenetic marks and variation in gene expression
levels16–19. We only considered enhancers that overlapped a
sentinel risk variant (or a proxy with r2 > 0.80) and restricted our
analysis to blood cells (Supplementary Data 8), given that most
target genes were identified based on eQTL data from whole-
blood. We found that 25 (28%) of the 88 target gene predictions
were supported by functional data (Supplementary Data 9).

Previously unreported risk loci for breast cancer. The second
major goal of this study was to identify previously unreported
risk loci for breast cancer using gene-based association analyses.
We first used approximate conditional analysis implemented
in GCTA9 to adjust the GWAS results2 (Fig. 2a) for the effect-
s of the 212 variants that had a significant independent associa-
tion with overall breast cancer. As expected, in the resulting
adjusted GWAS no single variant had a genome-wide significant
association (i.e. all had a GCTA-COJO conditional association
P > 5 × 10−8; Fig. 2b). We then applied the EUGENE gene-based
approach6,7 to the adjusted GWAS results, considering in a single
association analysis cis eQTL identified in five broad tissue types:
adipose, breast, immune cells, spleen, and whole-blood (Supple-
mentary Data 10). That is, we did not perform a separate gene-
based analysis for each tissue, but rather a single analysis that
considers all eQTL reported across the five tissues.

Of the 19,478 genes tested (full results provided as Supple-
mentary Material), 11 had a significant gene-based association
after correcting for multiple testing (EUGENE P < 0.05/19,478=
2.5 × 10−6; Table 2; Fig. 2c). The specific eQTL included in the
gene-based test for each of these 11 genes, which were located in
six loci >1Mb apart, are listed in Supplementary Data 10.

Regional association plots for the 11 genes are presented in
Supplementary Fig. 2, with three examples shown in Fig. 3.
Except for the MAN2C1 locus20, these loci have not previously
been identified by GWAS and thus represent putative breast
cancer susceptibility loci.

For most (9 of 11) genes identified, the association P-value
obtained with the gene- based test was more significant than the
P-value obtained with the individual eQTL most associated with
disease risk, indicating that multiple sentinel eQTL for the same
gene were associated with disease risk (range 2–6 associated
eQTL per gene; Table 2). For example, the EUGENE gene-based
P-value for GSTM2 was 6.6 × 10−8, while the best individual
eQTL showed more moderate association with breast cancer risk
(GCTA-COJO conditional association P= 4.1 × 10−5; five of the
14 sentinel eQTL tested for this gene were nominally associated
with disease risk (Supplementary Data 11).

We also studied the predicted directional effect of gene
expression on disease risk, as described above for target genes
of known breast cancer risk variants. When we considered
information from all eQTL associated with disease risk for each of
the 11 genes (Supplementary Data 11), we found that decreased
disease risk was consistently associated with decreased gene
expression for three genes and increased expression for five genes
(Table 3 and Supplementary Data 12). For the remaining three
genes, inconsistent directional effects were observed across
different eQTL.

Lastly, we used EUGENE to determine if any of the 88 target
genes of sentinel risk variants identified based on individual
eQTL also had a significant gene-based association in the
adjusted GWAS results. This would indicate that information
from additional breast cancer risk variants (i.e. in low LD with
the sentinel risk variants) supported the original target gene
prediction, which could be used to prioritize genes for functional
follow-up. We found that 11 of the 88 target genes had a
nominally significant gene-based association in the adjusted
GWAS results (EUGENE P < 0.05; Supplementary Data 13), with
one remaining significant after correcting for multiple testing:
CBX6 (EUGENE P= 0.0002).

Fig. 1 Examples of previously unreported target gene predictions at known breast cancer risk loci. Variants are represented by points colored according to
the LD with the sentinel risk variant (red: ≥0.8, orange: 0.6–0.8, green: 0.4–0.6, light blue: 0.2–0.4, and dark blue: <0.2). Sentinel risk variants (triangles)
were identified based on joint association analysis9. Figure shows on the y-axis the evidence for breast cancer association (−log10 of the P-value in the
original published GWAS results2, obtained in that study using an inverse-variance meta-analysis), and on the x-axis chromosomal position. Gene
structures from GENCODE v19 gene annotations are shown and the predicted target genes shown in red. a The sentinel risk variant at this locus (rs875311)
was in LD with sentinel eQTL for CFL1 (in whole blood) and for EFEMP2 (in CD8+ T cells only). b The sentinel risk variant (rs11049425, target gene:
CCDC91) represents a secondary association signal in this region. c The sentinel risk variant at this locus (rs8105994) is in LD with sentinel eQTL for two
previously unreported target gene predictions (AC010335.1 and LRRC25) and four previously predicted targets (CTD-3137H5.1, ELL, PGPEP1 and SSBP4;
(Supplementary Data 5). Regional association plots for the remaining target gene predictions for overall breast cancer (Supplementary Data 3) are
provided in Supplementary Figure 1

Table 1 Directional effect of genetically determined gene expression on disease risk for predicted target genes of breast cancer
sentinel risk variants

Directional effect Predicted target genes of breast cancer sentinel risk variants

Decreased expression associated with
decreased risk

AC007283.5, AHRR, AP006621.5, AP006621.6, APOBEC3B-AS1, ARRDC3, ASCC2, BCL2L15, BTN2A1,
CCDC170, CCDC91, CDCA7L, CEND1, CES1, COX11, CTB-161K23.1, CTD-2116F7.1, CYP51A1, DDA1, DFFA,
EFEMP2, ENPP7, FAM175A, GATAD2A, HAPLN4, HCG11, HIST1H4L, KCNN4, LRRC25, LRRD1, OGFOD1, PIDD1,
PPIL3, PTPN22, RPS23, SIRT5, SMG9, TGFBR2, TM6SF2, TMEM184B, TNS1, ZBTB38, ZNF703

Increased expression associated with
decreased risk

AC010335.1, AKAP9, APOBEC3A, ATF7IP, ATG10, ATP6AP1L, BTN2A3P, CBX6, CENPO, CFL1, COQ5, CTD-
3137H5.1, DCLRE1B, DNAJC27, ELL, ESR1, HLF, L3MBTL3, NUDT17, PGPEP1, RCCD1, RHBDD3, RNF115, RP11-
486M23.2, SIVA1, SYNE1, TEFM, TLR1

Ambiguous ADCY3, AMFR, APOBEC3B, CCDC127, HSPA4, MRPS18C
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Estrogen receptor (ER)-negative breast cancer. We applied the
same analyses described above to results from the Milne et al.
GWAS of ER-negative breast cancer, which included data on
21,468 cases and 100,594 controls, combined with 18,908 BRCA1
mutation carriers (9414 with breast cancer)3.

Of the 54 sentinel risk variants identified through approximate
joint association analysis (Supplementary Data 14), 19 were in
LD (r2 > 0.8) with a sentinel eQTL (Supplementary Data 15),
implicating 24 genes as likely targets of risk-associated variants
for ER-negative breast cancer (Supplementary Data 16). Of these,
13 were also identified as likely targets of variants associated with
overall breast cancer risk, while the remaining 11 genes were
specific to ER-negative risk variants: ATM, CCNE1, CUL5,
MCHR1, MDM4, NPAT, OCEL1, PIK3C2B, RALB, RP5-
855D21.3, and WDR43.

Seventeen genes were not highlighted as candidate target
genes in the Milne et al. GWAS3 (Supplementary Data 16 and
Supplementary Data 17), mostly (15 genes) because they are

predicted targets of risk variants identified in previous GWAS,
which were not considered by Milne et al.3. The two exceptions
were RP5-855D21.3 and CUL5, identified in our study based
on eQTL from adipose tissue and whole-blood, respectively.
Regional association plots for the 17 genes that represent
previously unreported predictions are presented in Supplemen-
tary Fig. 3, with three examples shown in Fig. 4.

The disease protective allele was associated with lower gene
expression for seven genes and higher gene expression for 11
genes (summary in Table 4 and Supplementary Data 18; detailed
information in Supplementary Data 15); for the remaining six
genes, directional effect was either not available (ATM, CASP8,
OCEL1, PEX14 and WDR43) or inconsistent across tissues
(ADCY3).

Of the 24 target gene predictions, 18 were supported by the
presence of enhancer– promoter chromatin interactions or an
association between enhancer epigenetic marks and gene
expression (Supplementary Data 19).
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When we applied EUGENE to the ER-negative GWAS results
obtained after conditioning on the 54 sentinel risk variants,
we identified four genes in four loci with a significant gene-
based association (EUGENE P < 2.5 × 10−6; Table 5, Supplemen-
tary Data 20 and Supplementary Fig. 4). Of these, we found that
lower disease risk was consistently associated with lower
expression for two genes (VPS52, GTF2IRD2B) and higher
expression for one gene (INHBB). For the fourth gene (TNFSF10),
directional effect was inconsistent across sentinel eQTL (detail
and summary in Supplementary Tables 21 and 22, respectively).

Other genes that could be prioritized for functional follow-up
include four (of the 24) target genes of sentinel risk variants that
had a nominally significant gene-based association in the adjusted
GWAS results (EUGENE P < 0.05; Supplementary Data 23):
RALB, CCDC170, NPAT, and CASP8.

Known role of the identified genes in cancer biology. We used
OncoScore, a text-mining tool that ranks genes according to their
association with cancer based on available biomedical literature21,
to assess the extent to which each of the breast cancer genes we
identified were already known to have a role in cancer. Of the 112
genes we identified across the overall and ER-negative analyses
that could be scored by OncoScore, 48 scored below the recom-
mended OncoScore cut-off threshold (21.09) for novelty,
including 25 with an OncoScore of 0, indicating no prior evidence
for a role in cancer biology (Tables 2 and 5; Supplementary
Tables 3 and 16). For the remaining 64 genes there is an extensive
literature on their role in cancer, and breast cancer in particular.

Discussion
To predict candidate target genes at breast cancer risk loci, we
identified sentinel eQTL in multiple tissues that were in high LD
(r2 > 0.8) with sentinel risk variants from our recent GWAS2.
Using this approach, we implicated 88 genes as likely targets of
the overall breast cancer risk variants. Because eQTL are wide-
spread, it is possible that some target gene predictions are false-
positives due to coincidental overlap between sentinel eQTL and
sentinel risk SNPs. At the LD threshold used, statistical methods
developed recently to formally test for co-localization between
eQTL and risk SNPs are of limited use, due to a high false-
positive rate22. The 88 genes identified therefore represent target
predictions that must be validated by functional studies. Of these
88, 26 genes had not been predicted as targets using a different
approach that considered breast-specific functional annotations

and eQTL data2, and so were considered previously unreported
candidate target genes.

Of the 26 previously unreported target predictions, all but one
were identified from eQTL analyses in blood, spleen, or immune
cells. They include several genes with a known role in immunity,
including: HLF, the expression of which is associated with the
extent of lymphocytic infiltration after neo-adjuvant chemother-
apy23; PTPN22, a shared autoimmunity gene24, which encodes
a protein tyrosine phosphatase that negatively regulates pre-
sentation of immune complex-derived antigens25; and RHBDD3,
a negative regulator of TLR3-triggered natural killer cell activa-
tion26, and critical regulator of dendritic cell activation27. In
addition, we identified IRF1, which encodes a tumor suppressor
and transcriptional regulator serving as an activator of genes
involved in both innate and acquired immune response28,29, as
a previously unreported breast cancer risk locus. These results
suggest that at least some of the previously unreported predicted
target genes play a role in cancer cell elimination or inflamma-
tion. However, another possibility is that eQTL detected in well-
powered studies of blood are predictors of eQTL in other less
accessible tissues, including breast and adipose tissue. Consistent
with this possibility, about 50% of the eQTL found to be in LD
with a sentinel risk variant for overall breast cancer (and similarly
for ER-negative breast cancer) were associated with the expres-
sion of the respective target gene in the relatively small GTEx
breast tissue dataset, although not at the conservative threshold
that we used to define sentinel eQTL. Of note, one previously
unreported target was identified through eQTL analyses in adi-
pose tissue: ZNF703. ZNF703 is a known oncogene in breast
cancer30, and has been reported to be associated with breast size31

which might suggest a role in adiposity.
Using the same approach, we also identified 24 genes as likely

targets of 19 ER- negative risk variants, of which 17 were not
proposed as candidate target genes in the original GWAS3. Eleven
of these 22 genes were unique to ER-negative breast cancer,
including for example CUL5, a core component of multiple SCF-
like ECS (Elongin-Cullin 2/5-SOCS-box protein) E3 ubiquitin-
protein ligase complexes which recognize proteins for degrada-
tion and subsequent Class I mediated antigen presentation32.

We also identified previously unreported breast cancer risk loci
using the recently described EUGENE gene-based association
test6,7, which was developed to aggregate evidence for association
with a disease or trait across multiple eQTL. Unlike other similar
gene-based methods (e.g. S-PrediXcan), EUGENE includes in a
single test information from eQTL identified in multiple tissues;

Table 2 Risk loci for breast cancer identified in the EUGENE gene-based analysis but not in previous GWAS

Locus
index

Gene Chr Start N sentinel eQTL Gene-based
P-valuea

Sentinel eQTL with strongest
association in the adjusted GWAS

OncoScore

Tested with P < 0.05 in
adjusted GWASb

Variant P-valueb

1 GSTM2 1 110210644 14 5 6.63E−08 rs621414 4.08E−05 38.97
2 SEMA4A 1 156117157 9 5 1.45E−07 rs887953 2.39E−06 27.04
3 LINC00886 3 156465135 1 1 2.34E−06 rs7641929 2.34E−06 N/A
4 AC034220.3 5 131646978 7 4 5.92E−07 rs11739622 0.000314 N/A
4 IRF1 5 131817301 2 2 4.99E−07 rs2548998 3.44E−05 42.46
5 SIK2 11 111473115 2 2 4.09E−07 rs527078 3.32E−05 39.57
5 PPP2R1B 11 111597632 8 2 2.31E−06 rs680096 2.91E−06 56.52
6 MAN2C1 15 75648133 14 6 1.91E−06 rs8028277 2.16E−06 26.66
6 RP11-817O13.8 15 75660496 4 4 3.83E−08 rs4545784 3.85E−06 N/A
6 SIN3A 15 75661720 4 4 3.83E−08 rs4545784 3.85E−06 42.43
6 IMP3 15 75931426 1 1 2.30E−06 rs4886708 2.30E−06 80.41

aGene-based association P-value obtained when the EUGENE gene-based test was applied to the adjusted GWAS results
bP-value in the Michailidou et al. 2. GWAS, adjusted for (i) the association with the sentinel risk variants identified in this study using the COJO-COND test; and (ii) the LD-score intercept
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this property is expected to increase power to detect gene asso-
ciations when multiple cell types/tissues contribute to disease
pathophysiology, for two main reasons. First, because tissue-
specific eQTL are common, and so a multi-tissue analysis is able
to capture the association between all known eQTL and disease
risk in a single test. Second, because in single-tissue analyses,

one needs to appropriately account for testing multiple tissues,
thereby decreasing the significance threshold required for
experiment-wide significance, which decreases power. When we
applied EUGENE to the overall breast cancer GWAS2, we iden-
tified 11 associated genes located in six previously unreported
risk loci. For most of these genes, there were multiple sentinel
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eQTL associated with overall breast cancer risk. In the analysis of
ER-negative breast cancer3, EUGENE identified four associated
genes (INHBB, TNFSF10, VPS52, and GTF2IRD2B) located in
four previously unreported risk loci.

Some of the predicted target genes identified are well known to
play a role in breast cancer carcinogenesis. For example, the genes
identified for ER-negative breast cancer included MDM4,
encoding a negative regulator of TP53, which is necessary for
normal breast development33; CCNE1, an important oncogene in
breast cancer34,35; CASP8, encoding a regulator of apoptosis36;
ATM, a known breast cancer susceptibility gene37,38; and the
ER, ESR1, which encodes a critical transcription factor in breast
tissue39. On the other hand, the 11 significant gene-based asso-
ciations for overall breast cancer included GSTM2, which is part
of the mu class of glutathione S-transferases that are involved in
increased susceptibility to environmental toxins and carcino-
gens40. Other noteworthy gene-based associations included those
with: IMP3, which contributes to self-renewal and tumor initia-
tion, properties associated with cancer stem cells41; PPP2R1B,
which encodes the beta isoform of subunit A of Protein Phos-
phatase 2A, itself a tumor suppressor involved in modulating
estrogen and androgen signaling in breast cancer42; and
SEMA4A43, recently shown to regulate the migration of cancer
cells as well as dendritic cells44.

Two recent studies reported results from analyses that are
similar in scope to those carried out in our study. First, Hoffman
et al.45 reported that genetically determined expression of six
genes was associated with risk of breast cancer: three when
considering expression in breast tissue (RCCD1, DHODH, and
ANKLE1) and three in whole blood (RCCD1, ACAP1, and
LRRC25). Of note, RCCD1 and LRRC25 were identified as likely
targets of known breast cancer risk variants in our analysis. We
also found some support for an association between breast cancer
risk and eQTL for ACAP1 (EUGENE P= 0.003) and ANKLE1
(EUGENE P= 0.01), but not for DHODH (best sentinel eQTL
P= 0.119). Second, we recently applied a different gene-based
approach called S-PrediXCan to results from the overall breast
cancer GWAS2, using gene expression levels predicted from
breast tissue20.

This study reported significant associations with 46 genes
(P < 5.82 × 10−6), including 13 located in 10 regions not yet
implicated by GWAS. A major difference between our analyses
is that the latter were based on the original GWAS summary
statistics, without adjusting for the effects of the sentinel risk

variants. This explains why most associated genes in their main
analysis were located near known breast cancer risk variants.
Of the 13 genes located in previously unreported risk loci, eight
were tested in our analysis (which considered eQTL identified
in multiple tissues, not just from breast as in ref. 20), of which four
had a nominally significant (P < 0.05) gene-based association:
MAN2C1 (P= 1.9 × 10−6), SPATA18 (P= 0.004), B3GNT1
(P= 0.012), and CTD-2323K18.1 (P= 0.021). These results show
that at least four of the associations reported by Wu et al.20, which
were based on information from breast eQTL only, are repro-
ducible when a different gene-based approach is applied to
the same GWAS results. Conversely, we identified a significant
association with 13 genes not reported by Wu et al.20, all with a
gene-based association driven by eQTL identified in non-breast
tissues, mostly in immune cells and/or whole-blood. For 78 of the
114 genes that we implicate in breast cancer risk, either through
target gene prediction or gene-based analyses, we were able to
determine the directional effect of the breast cancer protective
alleles on gene expression. In some cases, this was consistent with
their known function. For example, ZNF703 is a well-known
oncogene in breast cancer30 and decreased expression was asso-
ciated with decreased risk. Similarly, oncogenic activity has been
reported for PIK2C2B46, for which we found that decreased
expression is associated with decreased risk. Another gene for
which decreased expression was associated with decreased risk was
PTPN22 which is known to negatively regulate antigen presenta-
tion47 and therefore might suppress immunoelimination. By
contrast, CCNE148 and APOBEC3A49 have been reported to have
oncogenic roles, but we found that increased expression was
associated with decreased risk. We have previously found the
same counterintuitive relationship between breast cancer risk
alleles and CCND1 expression50. However, the expression patterns
observed in breast tumors may not be relevant to the activity of
these genes in the progenitor cells that give rise to breast tumors.

The directional effect of genetically determined gene expres-
sion on breast cancer risk is important because drugs that mimic
the effect of the protective allele on gene expression might be
expected to attenuate (rather than exacerbate) disease risk. For
example, decreased risk of ER-negative breast cancer was asso-
ciated with decreased expression of KCNN4, suggesting that an
antagonist that targets this potassium channel and has a good
safety profile51 might reduce disease risk. Given these results,
we suggest that KCNN4 should be prioritized for functional and
pre-clinical follow up.

Fig. 3 Examples of significant gene-based associations at loci not previously reported in breast cancer GWAS. Variants are represented by points colored
according to the LD with the sentinel risk variant (red: ≥0.8, orange: 0.6–0.8, green: 0.4–0.6, light blue: 0.2–0.4, and dark blue: <0.2). Sentinel eQTL
included in the EUGENE analysis (triangles) were identified from published eQTL studies of five different tissue types. Figure shows on the y-axis the
evidence for breast cancer association (−log10 of the P-value in the published GWAS after adjusting for the association with the sentinel risk variants using
the COJO-COND test, and the LD-score intercept), and on the x-axis chromosomal position. The sentinel eQTL most associated with breast cancer risk
is depicted by a black triangle; other sentinel eQTL included in the gene-based test are depicted by red triangles. Gene structures from GENCODE v19
gene annotations are shown and the predicted target genes shown in red. a–c show examples of three previously unreported loci which respectively
implicate PPP2R1B, IMP3 and GSTM2 as candidate breast cancer susceptibility genes. Regional association plots for the remaining eight gene- based
associations are provided in Supplementary Figure 2

Table 3 Directional effect of genetically determined gene expression on disease risk for genes identified in the gene-based
analysis of the adjusted breast cancer GWAS

Direction of effect Predicted target genes of breast cancer sentinel risk variants

Decreased expression associated with decreased risk IMP3, IRF1, SEMA4A
Increased expression associated with decreased risk LINC00886, MAN2C1, RP11-817O13.8, SIK2, SIN3A
Ambiguous AC034220.3, GSTM2, PPP2R1B
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Fig. 4 Examples of previously unreported target gene predictions at known ER- negative breast cancer risk loci. Variants are represented by points colored
according to the LD with the sentinel risk variant (red: ≥0.8, orange: 0.6–0.8, green: 0.4–0.6, light blue: 0.2–0.4, and dark blue: <0.2). Sentinel risk
variants (triangles) were identified based on joint association analysis9. Figure shows on the y-axis the evidence for ER-negative breast cancer association
(−log10 of the P-value in the original published GWAS results3, obtained in that study using an inverse-variance meta-analysis), and on the x-axis
chromosomal position. Gene structures from GENCODE v19 gene annotations are shown and the predicted target genes shown in red. The sentinel risk
variants are in LD with sentinel eQTL for MDM4 and PIK3C2B (a), ZNF703 (b), and ATM (c; Supplementary Data 17). Regional association plots for
the remaining 14 previously unreported target gene predictions are provided in Supplementary Figure 3
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In summary, we have used the largest available GWAS of
breast cancer, along with expression data from multiple different
tissues, to identify 26 and 17 previously unreported likely target
genes of known overall and ER-negative breast cancer risk var-
iants, respectively. We also describe significant gene-based asso-
ciations at six and four previously unreported risk loci for overall
and ER-negative breast cancer, respectively. Further investigation
into the function of the genes identified in breast and immune
cells, particularly those which have additional support from
experimental or computational predictions of chromatin looping,
should provide additional insight into the etiology of breast
cancer.

Methods
Predicting target genes of breast cancer risk variants. Recently, Michailidou
et al.2 reported a breast cancer GWAS meta-analysis that combined results from
13 studies: the OncoArray study (61,282 cases and 45,494 controls); the iCOGS
study (46,785 cases and 42,892 controls); and 11 other individual GWAS (with
a combined 14,910 cases and 17,588 controls). That is, a total of 122,977 cases
and 105,974 controls. The first aim of our study was to identify likely target genes
of breast cancer risk variants identified in that GWAS.

First, we identified variants associated with variation in gene expression (i.e.
eQTL) in published transcriptome studies of five broad tissue types: adipose, breast,
immune cells isolated from peripheral blood, spleen and whole- blood. We
identified a total of 35 transcriptome studies reporting results from eQTL analyses
in any one of those five tissue types (Supplementary Data 2). Some studies included
multiple cell types and/or experimental conditions, resulting in a total of
86 separate eQTL datasets. For each eQTL dataset, we then (i) downloaded the
original publication tables containing results for the eQTL reported; (ii) extracted
the variant identifier, gene name, association P-value and, if available, the effect size
(specifically, by “effect size” we mean the beta/z-score) and corresponding allele;
(iii) excluded eQTL located >1Mb of the respective gene (i.e. trans eQTL), because
often these are thought to be mediated by cis effects52; (iv) excluded eQTL with
an association P > 8.9 × 10−10, a conservative threshold that corrects for 55,764
transcriptsin Gencode v19, each tested for association with 1000 variants (as
suggested by others53–55); and (v) for each gene, used the --clump procedure in
PLINK to reduce the list of eQTL identified (which often included many correlated
variants) to a set of ‘sentinel eQTL’, defined as the variants with strongest
association with gene expression and in low LD (r2 < 0.05, linkage disequilibrium
(LD) window of 2 Mb) with each other.

Second, we identified variants that were independently associated with breast
cancer risk at a P < 5 × 10−8 in the GWAS reported by Michailidou et al. 2, which
included 122,977 cases and 105,974 controls. We refer to these as “sentinel risk
variants” for breast cancer. To identify independent associations, we first excluded
from the original GWAS (which tested 12,396,529 variants) variants with: (i) a
sample size < 150,000; (ii) a minor allele frequency < 1%; (iii) not present in, or not
polymorphic (Europeans) in, or with alleles that did not match, data from the 1000
Genomes project (release 20130502_v5a); and (iv) not present in, or with alleles

that did not match, data from the UK Biobank study56. After these exclusions,
results were available for 8,248,946 variants. Next, we identified sentinel risk
variants using the joint association analysis (--cojo- slct) option of GCTA9, using
imputed data from 5000 Europeans from the UK Biobank study56 to calculate LD
between variants. These individuals were selected based on the sample IDs (lowest
5000) from our approved UK Biobank application 25331.

Third, we identified genes for which a sentinel eQTL reported in any of the
86 eQTL datasets described above was in high LD (r2 > 0.8) with a breast cancer
sentinel risk variant. That is, we only considered genes for which there was high LD
between a sentinel eQTL and a sentinel risk variant, which reduces the chance
of spurious co-localization.

Directional effect of gene expression on breast cancer risk. Having identified
a list of genes with expression levels correlated with sentinel risk variants, we
then studied the directional effect of the breast cancer protective allele on gene
expression. For each sentinel eQTL in high LD (r2 > 0.8) with a sentinel risk
variant, we: (i) identified the allele that was associated with reduced breast cancer
risk, based on results reported by Michailidou et al. 2; and (ii) determined if that
allele was associated with increased or decreased target gene expression in each
of the eQTL datasets that reported that eQTL. For many studies, the directional
effect of eQTL (i.e. effect allele and beta) was not publicly available, and so for those
this analysis could not be performed.

We also assessed whether the directional effect of gene expression on disease
risk predicted by the approach described in the previous paragraph, which
considered one eQTL at a time (a limitation) but many different eQTL datasets
(a strength), would be recapitulated by applying S-PrediXcan10 to the same breast
cancer GWAS2 using transcriptome information from 922 whole-blood samples
studied by Battle et al.11. S-PrediXcan considers information from multiple eQTL
identified for a given gene in a given tissue (e.g. whole-blood) when determining
the association between genetically determined gene expression levels and disease
risk. Therefore, we reasoned that this approach could be particularly useful for
genes with multiple independent eQTL identified in the same tissue. The limitation
of this approach is that it first requires the generation of gene expression prediction
models based on individual-level variant and transcriptome data, which are not
publicly available for most of the 35 transcriptome studies included in our analysis.
We used gene expression models generated based on the whole-blood dataset of
Battle et al.11 because (i) most likely target genes were identified in our study based
on eQTL information from whole-blood or immune cells isolated from whole-
blood; and (ii) this was the largest transcriptome dataset we had access to.

Target gene predictions supported by functional data. Sentinels and variants in
high LD (r2 > 0.8 in Europeans of the 1000 Genomes Project, with MAF > 0.01)
were queried against the following sources of publicly available data generated from
blood-derived samples and cell lines. Computational methods linking regulatory
elements with target genes including PreSTIGE17, FANTOM516, IM-PET18,
enhancers and super enhancers from Hnisz et al.19. Experimental chromatin
looping data defined by ChIA-PET13 and capture Hi-C4,14 and in situ Hi-C15 were
mined to identify physical interactions between query SNPs and target gene
promoters. Variants were assigned to potential target genes based on intersection
with associated enhancer annotations using BedTools intersect57.

Table 4 Directional effect of genetically-determined gene expression on disease risk for predicted target genes of ER-negative
breast cancer sentinel risk variants

Direction of effect Predicted target genes of breast cancer sentinel risk variants

Decreased expression associated with decreased risk CCDC170, DDA1, KCNN4, PIK3C2B, RP5- 855D21.3, SMG9, ZNF703
Increased expression associated with decreased risk CCNE1, CENPO, CUL5, DNAJC27, ESR1, L3MBTL3, MCHR1, MDM4, NPAT, RALB, SYNE1
Ambiguous ADCY3

Table 5 Risk loci for ER-negative breast cancer identified in the EUGENE gene-based analysis and not in previous GWAS

Locus
Index

Gene Chr Start N sentinel eQTL Gene-based
P-valuea

Sentinel eQTL with strongest
association in adjusted GWAS

OncoScore

Tested with P < 0.05 in
adjusted GWAS*

Variant P-valueb

1 INHBB 2 121103719 3 2 1.13E−07 rs6542583 5.37E−06 25.82
2 TNFSF10 3 172223298 4 3 4.93E−07 rs2041692 5.66E−07 86.01
3 VPS52 6 33218049 2 1 1.01E−06 rs17215231 2.73E−07 17.45
4 GTF2IRD2B 7 74508364 1 1 8.52E−07 rs2259337 8.52E−07 0

aGene-based association P-value obtained when the EUGENE gene-based test was applied to the adjusted GWAS results
bP-value in the Milne et al. GWAS3, adjusted for (i) the association with the sentinel risk variants identified in this study using the COJO-COND test; and (ii) the LD-score intercept
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Identification of previously unreported risk loci for breast cancer. The second
aim of this study was to use a gene-based approach to identify loci containing
breast cancer risk variants that were missed by the single-variant analyses reported
by Michailidou et al. 2. At least three gene-based approaches have been described
recently to combine in a single test the evidence for association with a disease
across multiple eQTL6,8,10. Of these, we opted to use EUGENE6,7 because it is
applicable to GWAS summary statistics and combines in the same association test
information from eQTL identified in different tissues and/or transcriptome studies.
The latter feature is important for two main reasons. First, because multiple tissue
types are likely to play a role in the pathophysiology of breast cancer, and tissue-
specific eQTL are common58. Second, because different transcriptome studies of
the same tissue (e.g. blood) identify partially (not completely) overlapping lists of
eQTL. This might arise, for example, because of differences in sample size, gene
expression quantification methods (e.g. microarrays vs. RNA-seq, data normal-
ization) or demographics of the ascertained individuals (e.g. age, disease status).
Therefore, identifying eQTL based on information from multiple tissues and/or
studies is expected to produce a more comprehensive list of regulatory variants that
could be relevant to breast cancer pathophysiology. An additional advantage of
EUGENE is that it considers in the same test different types of eQTL (e.g. with
exon-specific or stimulus-specific effects), thereby increasing the likelihood that
causal regulatory variants related to breast cancer are captured in the analysis59.

EUGENE requires an input file that lists all eQTL that will be included in the
gene- based test for each gene. To generate such list for this study, we did as follows
for each gene in the genome. First, we took the union of all eQTL reported in the 86
eQTL datasets described above. Second, we used the --clump procedure in PLINK
to reduce the list of reported eQTL to a set of ‘sentinel eQTL’, defined as the
variants with strongest association with gene expression and in low LD (r2 < 0.1,
LD window of 1 Mb) with each other. Note that clumping was not performed
separately for each tissue or study, but rather applied to the union of eQTL
identified across all tissues/studies. If an eQTL was identified in multiple tissues/
studies, the clumping procedure was performed using the smallest P-value reported
for that eQTL across all tissues/studies. A file (BREASTCANCER.20170517.eqtl.
proxies.list) containing the sentinel eQTL identified per gene is available at [https://
genepi.qimr.edu.au/staff/manuelF/eugene/main.html].

For each gene, EUGENE extracts single-variant association results for each
sentinel eQTL identified (or, if not available, for a proxy with r2 > 0.8) from the
GWAS summary statistics, sums the association chi-square values across those
eQTL, and estimates the significance (i.e. P-value) of the resulting sum test statistic
using Satterthwaite's approximation, which accounts for the LD between eQTL7.
This approximation was originally implemented by Bakshi et al.60 in the GCTA-
fastBAT module and is now also available in EUGENE. LD between eQTL was
estimated based on data from 294 Europeans from the 1000 Genomes Project
(release 20130502_v5a).

Because our aim was to identify previously unreported breast cancer risk loci,
we did not apply EUGENE to the original results reported by Michailidou et al. 2.
Had we done so, significant gene-based associations would have been
disproportionally located in known risk loci; associations driven by previously
unreported risk variants would therefore be more difficult to highlight. Instead, we
first adjusted the results2 for the effects of the sentinel risk variants identified (see
section above), using the --cojo-cond option of GCTA9. In doing so, we obtained
adjusted GWAS results with no single variant with an association P < 5 × 10−8. We
then applied EUGENE to the adjusted GWAS results, including a correction of
the single-variant association statistic (i.e. chi-square) for an LD-score regression
intercept61 of 1.1072. This correction was important to account for the inflation of
single-variant test statistics observed in Michailidou et al.2 that were likely due to
unaccounted biases.

To maintain the overall false-positive rate at 0.05, the significance threshold
required to achieve experiment-wide significance in the gene-based analysis was set
at P < 0.05/N genes tested.

OncoScore. We used OncoScore, a text-mining tool that ranks genes according
to their association with cancer based on available biomedical literature21, to
determine which of the breast cancer genes we identified were already known to
have a role in cancer.

ER-negative breast cancer. Lastly, we used the approaches described above to
identify target genes and previously unreported risk loci for ER-negative breast
cancer. In this case, single-variant summary association statistics were obtained
from the Milne et al.3 GWAS, which included 21,468 ER-negative cases and
100,594 controls from the Breast Cancer Association Consortium, combined with
18,908 BRCA1 mutation carriers (9414 with breast cancer) from the Consortium of
Investigators of Modifiers of BRCA1/2, all tested for 17,304,475 variants (9,827,195
after the exclusions described above). The LD-score regression intercept used to
correct the single-variant association statistics of this GWAS was 1.0637.

Study approval. Informed consent was obtained from all subjects participating in
the Breast Cancer Association Consortium under the approval of local Institutional
Review Boards. Ethics approval was obtained from the Human Research Ethics
Committee of QIMR-Berghofer.

Data availability
GWAS summary statistics analyzed in this study are available upon request from the
BCAC and CIMBA co-ordinators. The list of sentinel eQTL identified from publicly
available datasets are available for download from https://genepi.qimr.edu.au/staff/
manuelF/eugene/main.html.

Code availability
The EUGENE gene-based approach is implemented in C++ and is available for
download from https://genepi.qimr.edu.au/staff/manuelF/eugene/main.html.
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