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Abstract

Mutations in CYP4F22 cause autosomal recessive congenital ichthyosis (ARCI). However,

less than 10% of all ARCI patients carry a mutation in CYP4F22. In order to identify the

molecular basis of ARCI among our patients (a cohort of ninety-two Spanish individuals) we

performed a mutational analysis using direct Sanger sequencing in combination with a multi-

gene targeted NGS panel. From these, eight ARCI families (three of them with Moroccan

origin) were found to carry five different CYP4F22 mutations, of which two were novel.

Computational analysis showed that the mutations found were present in highly conserved

residues of the protein and may affect its structure and function. Seven of the eight families

were carriers of a highly recurrent CYP4F22 variant, c.1303C>T; p.(His435Tyr). A 12Mb

haplotype was reconstructed in all c.1303C>T carriers by genotyping ten microsatellite

markers flanking the CYP4F22 gene. A prevalent 2.52Mb haplotype was observed among

Spanish carrier patients suggesting a recent common ancestor. A smaller core haplotype of

1.2Mb was shared by Spanish and Moroccan families. Different approaches were applied to

estimate the time to the most recent common ancestor (TMRCA) of carrier patients with

Spanish origin. The age of the mutation was calculated by using DMLE and BDMC2. The

algorithms estimated that the c.1303C>T variant arose approximately 2925 to 4925 years

ago, while Spanish carrier families derived from a common ancestor who lived in the XIII

century. The present study reports five CYP4F22 mutations, two of them novel, increasing

the number of CYP4F22 mutations currently listed. Additionally, our results suggest that the

recurrent c.1303C>T change has a founder effect in Spanish population and c.1303C>T

carrier families originated from a single ancestor with probable African ancestry.
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Introduction

Autosomal recessive congenital ichthyosis (ARCI) is a group of non-syndromic rare diseases

that affect keratinization. They can be divided into three main clinical subtypes: lamellar

ichthyosis (LI; OMIM 242300), congenital ichthyosiform erythroderma (CIE; OMIM 242100)

and harlequin ichthyosis (HI; OMIM 242500). Minor variants include bathing suit ichthyosis

(BSI) and two types of self-improving ichthyosis, self-healing collodion baby (SHCB) and acral

self-healing collodion baby (ASHCB). ARCI is characterized by epidermal scaling over the

whole body which is usually accompanied by other symptoms such as presence of collodion

membrane at birth, ectropion, eclabium, alopecia, palmar-plantar hyperkeratosis, hypohidro-

sis and variable erythema, among others [1,2]. To date, mutations in eleven different genes

have been found to underlie ARCI: ABCA12, ALOX12B, ALOXE3, CYP4F22, NIPAL4, TGM1
and more recently CERS3, PNPLA1, CASP14, SDR9C7 and SULT2B1 [3–8]. These genes

encode proteins that participate in the proper functioning of the skin barrier through various

pathways involved in lipid metabolism, its transport within the stratum corneum, and the for-

mation of the cornified envelope by cross-linking and lipid attachment [9]. TGM1 mutations

are the main cause of ARCI, followed by ALOXE3 and ALOX12B. Mutations in ABCA12,

NIPAL4 and CYP4F22 are less frequent, while the rest of genes are much rarer causes of ARCI.

However, there is still a percentage of ARCI cases without an identifiable cause (15% of cases

approximately)[10]. A potential genotype-phenotype correlation has not been found in any

gene with the exception of TGM1 and ABCA12. Mutations in TGM1 have been demonstrated

to be significantly associated with the presence of collodion membrane at birth, ectropion,

plate-like scales, and alopecia [11]. ABCA12 is the only gene associated with the harlequin

ichthyosis phenotype. It has been suggested that the type of mutation is correlated with the

ARCI phenotype: homozygotes or compound heterozygotes with truncating ABCA12 muta-

tions lead to the harlequin ichthyosis phenotype whereas missense mutations result in the LI

and CIE phenotypes [12].

CYP4F22 (OMIM 611495) is a protein that belongs to heme-thiolate cytochrome P450 sub-

family 4 (CYP4), and is predominantly active in lipid metabolism. The gene that encodes this

protein spans 44 kb and is comprised of 14 exons and 531 amino acids. Its transcript is present

in various tissues but is highly expressed in the epidermis, including skin and keratinocytes

[13]. A recent study demonstrated that CYP4F22 is a ω-hydroxylase which is essential for acyl-

ceramide synthesis, which in turn is important for epidermal barrier formation [14]. Consis-

tent with this, mutations in CYP4F22 have been identified in LI, CIE and SHCB ARCI patients

[15,16].

Despite its known implication in the development of ARCI, CYP4F22 is one of the least fre-

quently reported ARCI genes along with CERS3, NIPAL4 and the very recently described

SULT2B1, SDR9C7 and CASP14. In order to identify the molecular basis of ARCI among our

patients, we performed a mutational screening through direct Sanger sequencing in combina-

tion with a multigene NGS panel in a cohort of ninety-two Spanish ARCI individuals. In this

study, we report the mutations found in CYP4F22. Interestingly, one of the identified muta-

tions, c.1303C>T; p.(His435Tyr), was present in most of the families with mutated CYP4F22,

suggesting a possible founder effect.

Few founder mutations have already been described in the Spanish population. Our group

demonstrated the existence of founder effects in two different genes, PNPLA1 and ABCA12
[17,18]. In Galicia, three founder mutations, c.2278C>T, c.1223_1227delACAC and c.984

+1G>A, account for the majority of all TGM1 mutations identified in this Northwestern Span-

ish region [19]. Interestingly, the same founder mutation identified in Spain, ABCA12:

c.4139A>G, also has founder effects in other populations, including Morocco and Algeria
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[20]. However, no other founder mutations have been reported in the Moroccan ARCI

population.

The purpose of the study is: I) to identify the underlying genetic mutations in ARCI families

accompanied by their clinical characteristics in an attempt to find a possible genotype-pheno-

type association, II) to study the potential effect of those mutations on protein structure and

function, III) to elucidate whether the high frequency of the c.1303C>T variant is due to a

founder effect and, IV) to estimate the time to the most recent common ancestor (TMRCA) of

all carrier families and the origin of this mutation.

Materials and methods

Patient recruitment and clinical characterization

Ninety-two Spanish ARCI patients, who belonged to eighty-two different families, 49 males,

42 females and one patient with no sex information, participated in the study. All patients

were Spanish, but nine patients from eight families had non-Spanish ancestries. Six patients

had ancestries from Morocco, one from Poland, one from Cuba and one from Venezuela. The

average age of patients at the time of the study was 27 years old. One hundred and fifty-nine

healthy close relatives were also included.

Affected individuals were clinically characterized by a dermatologist. Pedigrees of families

with at least three generations were also required where possible. Available pedigrees of fami-

lies with mutations in CYP4F22 are presented as supplementary material S1 Fig.

Informed consent was obtained from each subject. The study was approved by the Galician

Ethical Committee for Clinical Research (Code 2013/056) and the procedures followed were

in accordance with the Declaration of Helsinki. All participants provided written informed

consent.

Mutation screening

Genomic DNA was extracted from peripheral blood from each patient and available close rela-

tives according to standard procedures. Mutation analysis of CYP4F22 was performed by

Sanger sequencing or targeted resequencing on SOLiD 5500xl or Ion Proton Platforms

(Thermo Fisher Scientific; San Jose, CA, USA) according to manufacturer’s protocols.

Sequencing library preparation was performed according to Agilent SureSelect (Agilent Tech-

nologies, Santa Clara, CA, USA) protocols. Variants were validated by Sanger sequencing and

annotated according to NCBI Reference Sequence: NM_173483.3.

Computational analyses

In silico analyses were performed using Alamut Visual Interactive Biosoftware 2.11.0 (Alamut,

Rouen, France), which predicts the possible functional impact of mutations. Within Alamut,

the pathogenicity of novel missense variants was tested by AlignGVGD, SIFT and Mutation

Taster, while HSF, MaxEnt and NNSPLICE were used to study the possible splicing effect of

the splice-site variants. In addition, we used the aggregate scorer for variants of unknown sig-

nificance, CADD (Combined Annotation Dependent Depletion; https://cadd.gs.washington.
edu).

The degree of conservation of each residue was assessed using the BLASTP tool available

through the Uniprot website (http://www.uniprot.org/blast). A multiple sequence alignment

was performed in order to compare the human CYP4F22 protein (UniProt: Q6NT55) with

seven different species (Gorilla, Cow, Pig, Horse, Mouse, Frog and Fish).

Novel CYP4F22 mutations in autosomal recessive congenital ichthyosis (ARCI)

PLOS ONE | https://doi.org/10.1371/journal.pone.0229025 February 18, 2020 3 / 15

https://cadd.gs.washington.edu/
https://cadd.gs.washington.edu/
http://www.uniprot.org/blast
https://doi.org/10.1371/journal.pone.0229025


The significant differences in haplotype frequencies in cases and controls were evaluated

with the R statistical software version 3.3.2 (R Foundation for Statistical Computing, Vienna,

Austria) using contingency table analysis with the Fisher Exact Test.

The secondary mRNA structures and thermodynamic parameters of wild type and mutant

CYP4F22 were predicted using ‘the mfold web server’ using default parameters (http://mfold.
rna.albany.edu/?q=mfold).

Modeling of CYP4F22 pathogenic variants was performed using the template created by

Kumar [21] based on the comparative modeling method. The CYP4F22 model was used to

compare the mutant protein with the wild type. We used the Swiss-Pdb Viewer (SPDBV) soft-

ware (http://spdbv.vital-it.ch/) for the study and visualization of the predicted structures.

Haplotype reconstruction

To test for a possible founder effect, we constructed the haplotypes of individuals harboring

the c.1303C>T mutation by using ten extragenic microsatellite markers (Fig 1). Control allele

frequencies in the same markers were determined using two hundred chromosomes of Span-

ish individuals who did not present any type of ichthyosis or other types of epidermal disease.

The control group was composed of fifty men and fifty women with an average age of 42 years

old.

These markers were selected from the UCSC Genome Browser (https://genome.ucsc.edu).

They spanned a 12Mb region flanking the CYP4F22 gene locus, with five microsatellites each

side of the gene. Forward PCR primers were labeled with either FAM or HEX fluorescent dyes

(Sigma- Genosys Ltd. Cambridgeshire, UK). The oligonucleotide sequences used for

Fig 1. Schematic representation of the ten extragenic markers, their chromosomal position and haplotypes reconstructed for each proband with the c.1303C>T

mutation. The founder haplotype identified is shaded light grey. Some patients are homozygous carriers (two haplotypes represented) and some are heterozygous

carriers (one haplotype represented).

https://doi.org/10.1371/journal.pone.0229025.g001
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genotyping are available in S1 Table. The amplification products were separated by capillary

electrophoresis on an ABI3730xL sequencer and analyzed with GeneMapper v4 Software.

To reconstruct the chromosome haplotypes of the 200 controls we used the PHASE v2.11

software (http://www.stat.washington.edu/stephens/phase/download.html). Patient´s haplo-

types were manually reconstructed by inspection of all marker alleles around the disease locus.

The genetic distances between the markers, indicated in Fig 1, were derived from the UCSC

database (https://genome.ucsc.edu/) (Reference genome GRCh37/hg19). Physical distances

were converted to centiMorgans assuming 2cM = 1 Mb according to the deCODE genetic

map, also available through the UCSC website.

Estimation of TMRCA

The TMRCA was estimated based on the linkage disequilibrium, using single marker algo-

rithms and haplotype sharing methods:

-We used three single marker algorithms that produce TMRCA estimates based on the

degree of recombination between one marker and the mutation across generations. The algo-

rithms described by Bergman et al [22], Risch et al [23] and Yan et al [24] (applying the correc-

tion proposed by Labuda [25] for two different growth rates: Spanish growth rate r = 0.0748

and European growth rate r = 0.05). To translate map distances into recombination fractions

we used the Haldane map function [26]. The single marker estimation for each algorithm was

summarized by the mean of the results across the available markers. The D19S415 allele was

present in all Spanish origin chromosomes carrying the mutation, thus this marker was not

included in the estimations (see Supplementary Information S2 Table for further details).

-We also used two methods based on haplotype sharing. One developed by Gandolfo et al
[27] based on the genetic length of ancestral haplotypes shared between individuals who carry

the mutation; and another created by Genin et al [28], which uses both the overall genetic

length of the haplotype and the physical distances between markers.

Mutation age estimation

To estimate the c.1303C>T; p.(His435Tyr) mutation age, two mathematical approaches were

applied [29,30]:

a. The program BDMC v2.1 (http://www.rannala.org/docs/bdmcdoc.html), utilizes a Markov

chain method that estimates the age of a given allele though a combination of its frequency

and the extent of variation among different copies. Confidence intervals of the MLE (Maxi-

mum Likelihood Estimate) were calculated using the asymptotic approach of the maximum

likelihood method [31].

b. The software DMLE+ v2.3 (http://dmle.org/) instead employs a Bayesian estimation of the

position of a given disease mutation relative to a set of markers.

For both approaches, the proportion of mutation-bearing chromosomes (f) and the popula-

tion growth parameter (r) were required. Considering that the estimate of mutation age seems

to be sensitive to demographic parameters (growth rate, mutation frequency and population

size), we analyzed our haplotype data assuming the two different growth rates mentioned previ-

ously (r = 0.0748 and r = 0.05) and three different proportions of mutation-bearing chromo-

somes, according to data published by Hernández-Martı́n et al [32] (f = 2.99x10-4, f = 2.03x10-4,

f = 2.32x10-4).
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Results

CYP4F22 identified mutations

Eight patients from eight different families, seven new and one previously reported by

Noguera-Morel et al [15] (Family 67), were carriers of five different CYP4F22 mutations.

Although all probands were born in Spain, three of them were of Moroccan origin (Table 1).

Of the six CYP4F22 mutations identified, four of them were missense mutations and one was a

splice-site mutation. Two of these were novel, c.368-1G>A and c.1543C>T, p.(Arg515Cys);

and three were previously described by Lefevre et al [13] [c.1303C>T; p.(His435Tyr) and

c.728G>A; p.(Arg243His)] and Lima Cunha et al [33] [c.982G>A; p.(Glu328Lys)]. The novel

mutation, c.368-1G>A, could not be confirmed by segregation analysis. The recurrent muta-

tion c.1303C>T; p.(His435Tyr) accounted for 69% of the mutant alleles (eleven of sixteen).

Four patients were homozygous carriers while three patients had the mutation in a compound

heterozygous form with c.1543C>T, c.728G>A and c.982G>A.

The effect of the altered amino acids on the overall protein structure seems important for

studying the effect of the mutations on the protein’s 3D structure and function (Fig 2). The

potential impact of each mutation was predicted as follows:

Table 1. Clinical and genetic information of patients with CYP4F22 mutations.

Patienta 31(III.3) 34 57(III.1) 67(IV.1) 94(III.1) 123 127 134

Mutations Mutation 1 c.1303C>T

p.(His435Tyr)

c.1303C>T

p.

(His435Tyr)

c.728G>A

p.

(Arg243His)

c.1303C>T

p.

(His435Tyr)

c.1303C>T

p.

(His435Tyr)

c.368-

1G>A

c.1303C>T

p.

(His435Tyr)

c.982G>A

p.

(Glu328Lys)

Mutation 2 c.1543C>T

p.(Arg515Cys)

c.1303C>T

p.

(His435Tyr)

c.1303C>T

p.

(His435Tyr)

c.1303C>T

p.

(His435Tyr)

c.1303C>T

p.

(His435Tyr)

c.368-

1G>A

c.1303C>T

p.

(His435Tyr)

c.1303C>T

p.

(His435Tyr)

Age at genetic

diagnosis

9 NA 59 6 8 NA NA 3

Origin (Basque

Country)

Spain (NE)

Morocco (Madrid)

Spain

(Madrid)

Spain (

(Murcia)

Spain (SE)

Morocco Morocco (Cádiz)

Spain (S)

Phenotype CIE NA LI SHCB CIE LI NA CIE

Collodion P P P P P N P P

Prematurity N NA N P N N N P

Ectropion N NA N P N N P N

Alopecia N NA N N P N N N

PPK P NA P P P N N N

Scales Size B S B S S V NA S

Color W D W W W D NA W

Altered Sweating N P P N N P NA N

Erythema P N N P P N NA P

PH P P P P P P NA P

Affected area Flexor N N P P P N NA P

Extensor N P P N P P NA P

Facial P N P P N P NA P

Palmoplantar P P P P P N NA P

TRT TR TR TR &OR TR TR TR TR TR

Lamellar Ichthyosis (LI) Congenital Ichthyosiform Erythroderma (CIE) and SCHB (Self-Healing Collodion Baby).
aSee pedigrees available in the supplementary data (S1-S4), numbers indicate the family while the combination of Roman and Arabic numerals denote the position of

the patient within the pedigree. NE: North-East, C: Central, SE: South-East, S: South, P: positive, N: negative, NA. Not Available, B: Big, S: Small, W: Whitish, D: Dark,

PPK: Palmoplantar keratoderma, PH: Palmar hyperlinearity, TRT: Treatment, TR: Topical Retinoids, OR: Oral Retinoids.

https://doi.org/10.1371/journal.pone.0229025.t001
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- c.728G>A; p.(Arg243His), a bond between the arginine and a nearby serine located

within the same loop is lost (S2 and S3 Figs). This could possibly alter the loop structure.

Arg243 is conserved in all species examined from human to sheep (S4 Fig) and is predicted to

be deleterious and disease causing by Mutation Taster and Sift predictors (See Table 2). Fur-

thermore, the mRNA structure of mutant CYP4F22 predicted by mfold, revealed a different

folding pattern compared to the wild type with a decrease in free energy (dG = -2.68), increas-

ing the RNA stability, which may affect the expression level of the protein (S5 Fig).

- c.982G>A; p.(Glu328Lys), the Glu328 residue is located in the middle of a helix and the

side-chain forms three hydrogen bonds, one of which is with the side-chain of Leu144, in con-

trast, the Lys328 is unable to form this bond (S2 and S3 Figs). This residue is highly conserved

(S4 Fig), suggesting it plays an important role in the stability of the protein. The variant does

not alter the CYP4F22 mRNA structure (S6 Fig). Additionally, this substitution is predicted to

be deleterious and disease causing by Mutation Taster and Sift predictors (See Table 2).

Fig 2. Ribbon diagram of the CYP4F22 protein with the position of the five pathogenic variants shaded in different colors. The heme prosthetic group is shown in

the center of the figure, illustrated by a brown grid. Each variant has an inset to show the local environment of the wild type/altered residue. Green dots represent a

strong H-bond while purple dots represent a clash (short distance repulsive energy).

https://doi.org/10.1371/journal.pone.0229025.g002
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- c.1303C>T; p.(His435Tyr), the His435 residue is positioned in a loop and it has connec-

tions with other close residues (Ile 431, Val 466, Arg397) located in or near a beta sheet, loop

and helix, respectively (S2 and S3 Figs). When histidine is replaced by tyrosine some of these

connections are missing, altering the residue environment and the secondary structure of the

protein. His435 is also conserved across all examined species (S4 Fig) and is very likely to be

pathogenic according to all predictors (Table 2). The predicted mRNA structure of CYP4F22

is not disturbed by this mutation (S7 Fig).

- c.1543C>T; p.(Arg515Cys), arginine is a large amino acid that can interact with close resi-

dues establishing bonds with helix or loops, in contrast, cysteine is a small amino acid (S2 and

S3 Figs). The replacement of arginine for cysteine would disrupt some of these relations, in

turn disturbing the secondary structure of the protein. Arg515 is conserved in all species from

human to sheep (S4 Fig) and all algorithms predicted the pathogenicity of this variant (Table 2).
The variation was predicted not to affect the structure of mRNA (S8 Fig).

- c.368-1G>A is predicted to alter the splicing process by skipping of the fifth exon of the

CYP4F22 gene (Table 2). Thus the protein structure would be altered by the loss of at least one

loop (the missing loop is colored red in Fig 2).

Clinical and genetic characteristics of patients with CYP4F22 mutations

Two of the eight patients with CYP4F22 mutations presented a clinical phenotype of LI, three of

the eight affected individuals had the CIE phenotype, and only one patient was diagnosed with

SCHB. Clinical diagnosis was not available for two patients (Patients 34 and 127). The most

Table 2. Characteristics of the CYP4F22 mutations detected in our families.

Nucleotide

Change

Aminoacidic

change

Exon/

Intron

Resultant

Change

Mutation

Type

In Silico Prediction MAF Reference

Mutation
Taster

SIFT Align GVGD CADD
Score

Splicing

c.368-

1G>A

Intron

4

Skip of exon 5

very likely

Splice-Site 27.2 Predicted change

at acceptor site 1

bps downstream:-

100.0%

- This

study

c.728G>A p.(Arg243His) Exon 8 Highly

conserved

residue altered

Missense Disease

causing

Deleterious Least likely

to interfere

with

function

25.0 A = 4.6E-

06

9

c.982G>A p.(Glu328Lys) Exon 9 Highly

conserved

residue altered

Missense Disease

causing

Deleterious Least likely

to interfere

with

function

26.6 A = 8.7E-

07

33

c.1303C>T p.(His435Tyr) Exon

12

Highly

conserved

residue altered

Missense Disease

causing

Deleterious Most likely

to interfere

with

function

26.5 T = 7.7E-

06

13

c.1543C>T p.(Arg515Cys) Exon

14

Moderately

conserved

residue altered

Missense Disease

causing

Deleterious Most likely

to interfere

with

function

29.7 - This

study

Mutation nomenclature: the Human Genome Sequence Variation guideline was followed. Reference sequences CYP4F22 (NM_173483.3, NP_775754) were used for

naming the nucleotide and protein variations respectively. A CADD score of 20 and above means that a variant is amongst the top 1% of deleterious variants in the

human genome, a score of 30 means that the variant is in the top 0.1%. Percentages are the consensus values from 0 to 100 for Splicing prediction algorithms (HSF,

MaxEnt and NNSPLICE). Available Minor Allele Frequencies (MAF) of European Non-Finnish population were taken from the gnomAD database (http://gnomad.

broadinstitute.org/).

https://doi.org/10.1371/journal.pone.0229025.t002
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common symptoms were collodion membrane at birth, palmar hyperlinearity and whitish scales

all over the body (see Table 1). The majority of patients were taking topical retinoids. Contrast-

ingly, the presence of alopecia, ectropion and premature birth were infrequent among these

patients. Whitish small scales were observed more often than big and dark scales (Table 1).

Among patients with LI, we found two different types of mutations: one individual was

homozygous for splice-site mutation c.368-1G>A, while the other one was a compound het-

erozygous carrier of two different missense mutations [c.1303C>T; p.(Arg435Tyr) and

c.728G>A; p.(Arg243His)]. All patients with CIE had missense mutations. Moreover, the

homozygous c.1303C>T mutation was present in patients with either SCHB (family 67) or

CIE phenotypes (family 94), as shown in Table 1.

Haplotype construction and TMRCA estimation

We constructed the haplotypes flanking the CYP4F22 locus in eleven c.1303C>T carrier chro-

mosomes. A prevalent haplotype, 3-2-5-8, over a 2.52 Mb interval that stretches from marker

D19S840 to D19S917 was identified among Spanish CYP4F22 chromosomes with the c.1303C>T

mutation (Fig 1). This haplotype was significantly more frequent in patients (three out of seven

haplotypes) than in controls (one haplotype in two hundred) (p = 0.0000869). The 4-6-5-5-8 hap-

lotype ranging from markers D19S221 to D19S917 was shared between the two patients with

Moroccan origin (families 34 and 127), both of whom were homozygous for the c.1303C>T

mutation. A common core haplotype of 1.2Mb (5–8) was present in almost all carrier patients

(five patients, eight chromosomes; Fig 1). We determined the TMRCA of carrier chromosomes

with Spanish origin, by applying both single marker and haplotype sharing methods (Table 3).

Using haplotype sharing methods, the TMRCA was estimated to be 23 generations (95% CI

13–44) using Genin´s approximation, while Gandolfo´s algorithm showed a mean of 34 genera-

tions (95% CI 14–90). We could also see differences in the estimates from the three single marker

methods, depending on the algorithm applied: 26 generations (95% CI 13–40) for Bergman´s

estimator, 39 generations (95% CI 24–54) according to Risch´s estimator and 23 generations

(95% CI 10–37) with Yan´s equation. By averaging the estimates of all methods, the TMRCA of

c.1303C>T mutation carrier patients with Spanish ancestry would date back 29 (95% CI 23–35)

generations. Assuming an average generation time of 25 years, this would mean that carrier fam-

ilies derived from a common ancestor who lived approximately 725 years ago (Table 3).

Dating the c.1303C>T mutation

We estimated the age of the c.1303C>T mutation using two mathematical approaches, DMLE

+ and BDMC21. According to DMLE+ (using an average population growth of r = 0.05 and

Table 3. TMRCA and mutation age estimations.

TMRCA MUTATION AGE (generations)

Algorithms Estimated time DMLE BDMC2.1

Bergman 26 (13–40) Growth Rate r = 0.0748 Growth Rate r = 0.05 Growth Rate r = 0.0748 Growth Rate r = 0.05

Risch 39 (24–54) Values of (f) Estimated generations Estimated generations Estimated generations Estimated generations

Yan 23 (10–37) f = 0.000299 112.33 (88.68–157.00) 162.63 (125.07–229.70) 130 (129.92–130.08) 190 (189.97–190.03)

Genin 23 (13–44) f = 0.000203 119.79 (93.19–164.12) 171.02 (129.45–234.05) 130 (129.93–130.07) 200 (199.96–200.04)

Gandolfo 34 (14–90) f = 0.000232 117.46 (91.76–161.37) 164.51(128.53–226.66) 130 (129.92–130.08) 200 (199.99–200.01)

All estimators 29 (23–35) Mean estimations 116.53 (120.85–112.21) 166.05 (161.07–171.04) 130 (129.92–130.08) 196.67 (190.13–203.20)

Results are given in number of generations, with a confidence interval of 95% for the mean. The mutation age was calculated using a variable proportion of mutated

chromosomes (f) and a variable population growth rate (r). See Materials and Methods section for a detailed description.

https://doi.org/10.1371/journal.pone.0229025.t003
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different values of sampled population (f = 2.99x10-4, f = 2.03x10-4, f = 2.32x10-4), the mean

posterior age estimate was 162.63 (95% CI 125.07–229.70), 171.02 (95% CI 129.45–234.05) and

164.51 (95% CI 128.53–226.66) generations, respectively. This approximately equates to 4075

to 4275 years ago, assuming a generation time of 25 years. Lower estimates of 112.33 (95% CI

88.68–157.00), 119.79 (95% CI 93.19–164.12) and 117.46 (95% CI 91.76–161.37) were obtained

for the same f values by using a growth rate of r = 0.0748. These figures would correspond to a

mutation age range of 2800 to 3000 years.

When using the BDMC2.1 approach, the number of generations increases. The analyzed

range of f gives an estimation of 130 (95% CI 129.92–130.08) for a growth rate of r = 0.0748,

thus the mutation would date to 3250 years. A growth rate of r = 0.05 with the same f values

gives an estimated age of 196.67 (95% CI 190.13–203.20). This would indicate that the

c.1303C>T mutation could have arisen approximately 4925 years ago. Data shown in Table 3.

Discussion

In the present study, we report five different CYP4F22 mutations found in eight ARCI families

with two origins (Spanish and Moroccan). Four mutations were missense and one was splice-

site, which is in line with the mutation type frequencies already present in the literature which

include: twenty-six missense (60%), seven splice-site (14%), five nonsense (10%), six frameshift

(12%), one indel (2%) and one gross deletion (2%), implying that ARCI patients with muta-

tions in CYP4F22 are more likely to carry missense mutations than any other type of patho-

genic variants [13,16,33–44]. It is interesting to note that, despite affecting well-conserved

residues across multiple species, our 4 coding mutations are not located within the putative

functional domains of the protein [39,45]. Furthermore, we found that only five mutations

[13,35,40,44], from the forty-six reported to date, were within these domains, which suggests

that other regions of the protein may have critical functions.

Clinical presentation varied significantly among these patients, but the most common

symptoms were: collodion membrane at birth, fine whitish scales and affected palmoplantar

area [16,36,38,44,45]. No genotype-phenotype correlation between the location or type of

mutation, and major clinical features, was evident in our patients. This could indicate that

other factors, either external, such as environment or lifestyle, or internal, such as the genetic

background of each individual, could modulate the penetrance of these mutations.

To date, CYP4F22 mutations have been reported in different populations: Italian, Algerian,

Scandinavian, Iranian, Spanish, etc [13,15,16,36,43]. The mutation frequency varies among

different populations, in Scandinavian countries, Iran and Italy the percentages vary from 2%

to 6% of all ARCI-related mutations [16,36,43], whereas in populations where a founder effect

seems likely, the frequency reaches 10–12% [35,44]. Thus, Bučková et al proposed a founder

effect for the c.59dupG mutation in the Czech population, while Hotz et al suggest a similar

effect in the case of c.1303C>T in the Algerian population [35,44]. In our cohort, CYP4F22
mutations represent 9% (8 out of 92) of the total ARCI cases. This percentage is similar to

those reported by Bučková et al and Hotz et al and this could be due to a founder effect for

c.1303C>T in the Spanish population. The c.1303C>T mutation has been previously reported

in a total of seventeen families, including one Italian case [43], thirteen families from Algeria

[13,35], two patients from Germany and Cape Verde [35], two Persian, one Turkish family

[36] and a Spanish individual with SHCB [15]. This last patient was also included in the cur-

rent study. The majority of the families reported to carry this mutation come from the same

area of Algeria [35].

The high frequency of the variant c.1303C>T detected in our patients, led us to investigate

if the observed alleles share a common origin. The data obtained from the study of ten STR
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markers revealed the existence of a 2.52Mb major haplotype among carrier patients with Span-

ish ancestry confirming the hypothesis of a recent common ancestor. A smaller core haplotype

of 1.2Mb was shared by almost all c.1303C>T carrier chromosomes which suggests that Span-

ish and Moroccan families could be descendants from a further common ancestor.

To further address this issue, we estimated the TMRCA of Spanish carrier families with two

different approaches, and obtained a median of 29 generations. This estimation would date

their common ancestor to the XIII century, thus, it is possible that this ancestor could have

African origin, considering the prevalent Berber origin (including here Morocco and Algeria)

of the Arab groups invading southern Europe, during the VIII-XV century AD [46].

In order to study the history of the CYP4F22 c.1303C>T substitution, we estimated the

mutation age, which is not necessarily the same as the TMRCA, by using two programs:

BDMC21 and DMLE+. These methods are known to be highly dependent on demographic

parameters. In fact, when two different growth rates are used, the estimated allelic age varies

considerably, while different proportions of mutation-bearing chromosomes does not seem to

lead to much potential variability, especially in the case of BDMC21. Regarding the age of

mutation estimation, we consider that results derived from DMLE calculations are more accu-

rate. This is due to the sophistication of the algorithm, which accounts for more variables and

complex data compared with BDMC21. We also believe that a growth rate of 0.05 is more rig-

orous than growth rate of 0.0748, since this founder mutation is also present in other European

countries and is not only confined to Spain.

Despite the possible limitations, it is plausible to hypothesize that the CYP4F22 c.1303C>T

variant originated approximately 2925 to 4925 years ago in a Neolithic population from North

Africa and later, in the XIII century, it was introduced to the Iberian Peninsula during the

Islamic invasions in Southern Europe and specifically in the Spanish territory.

In summary, the present study reports five CYP4F22 mutations derived from the genetic

analysis of eight ARCI families. Two of the identified mutations were novel, c.368-1G>A and

c.1543C>T; p.(Arg515Cys), increasing the number of CYP4F22 mutations currently listed.

We used in silico approaches to predict their possible effect on the protein function. Although

there was some variation, we found that the presence of collodion membrane at birth, palmar

hyperlinearity and palmoplantar affected area were the most common symptoms among our

patients with CYP4F22 mutations. c.1303C>T; p.(His435Tyr) was the most prevalent muta-

tion, identified in our families and was confirmed to be a consequence of a founder effect in

the Spanish population. These families originated from a single ancestor with probable African

ancestry who lived 29 generations ago and the mutation first appeared in the Neolithic era.
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S2 Table. Linkage disequilibrium analysis. Values for the TMRCA calculations according to

Bergman, Risch and Yan algorithms for each marker with the correction proposed by Labuda

et al. TMRCA age estimation was also calculated using the algorithms developed by Gandolfo

et al and Genin et al. Labuda correction is also expressed in generations. θ: recombination frac-
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mal population, PN: frequency of the founder allele in the disease population.
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S1 Fig. Pedigree of families 31, 57, 67 and 94.

(TIF)
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S2 Fig. Local environment and interactions of the wild type residues. Arg243(Orange),

Arg328(Magenta), His435(Violet) and Arg515(Yellow). Green dots represent a strong H-bond

while purple dots represent a clash (short distance repulsive energy).

(TIF)

S3 Fig. Local environment and interactions of the mutated residues. His243(Orange),

Lys328(Magenta), Tyr435(Violet) and Cys515(Yellow). Green dots represent a strong H-bond

while purple dots represent a clash (short distance repulsive energy).

(TIF)

S4 Fig. Comparison of partial amino acid sequence of human CYP4F22 across different

species. Red shaded amino acids indicate the conserved residue affected by the four missense

mutations.

(TIF)

S5 Fig. The secondary mRNA structure of wild type (c.728G) and mutant (c.728A)

CYP4F22. Predicted by mfold online software (simulated under standard parameters). The

altered nucleotide is shaded in yellow.

(TIF)

S6 Fig. The secondary mRNA structure of wild type (c.982G) and mutant (c.982A)

CYP4F22. Predicted by mfold online software (simulated under standard parameters).

(TIF)

S7 Fig. The secondary mRNA structure of wild type (c.1303C) and mutant (c.1303T)

CYP4F22. Predicted by mfold online software (simulated under standard parameters).

(TIF)

S8 Fig. The secondary mRNA structure of wild type (c.1543C) and mutant (c.1543T)

CYP4F22. Predicted by mfold online software (simulated under standard parameters).

(TIF)
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