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Abstract: Early diagnosis of severe infections requires of a rapid and reliable diagnosis to initiate
appropriate treatment, while avoiding unnecessary antimicrobial use and reducing associated mor-
bidities and healthcare costs. It is a fact that conventional methods usually require more than 24–48 h
to culture and profile bacterial species. Mass spectrometry (MS) is an analytical technique that has
emerged as a powerful tool in clinical microbiology for identifying peptides and proteins, which
makes it a promising tool for microbial identification. Matrix assisted laser desorption ionization–
time of flight MS (MALDI–TOF MS) offers a cost- and time-effective alternative to conventional
methods, such as bacterial culture and even 16S rRNA gene sequencing, for identifying viruses, bac-
teria and fungi and detecting virulence factors and mechanisms of resistance. This review provides
an overview of the potential applications and perspectives of MS in clinical microbiology laboratories
and proposes its use as a first-line method for microbial identification and diagnosis.

Keywords: MALDI–TOF MS; microbial identification; proteomics; resistome; disease biomarkers

1. Background

Mass spectrometry (MS) was originally developed at the end of the 19th century to
measure the masses of atoms, and one of its first contributions to science was demonstrat-
ing the existence of isotopes, at the beginning of the 20th century [1]. MS is an analytical
approach that measures the mass-to-charge ratio (m/z) of chemical compounds and calcu-
lates its exact molecular weight. Laser desorption/ionization (LDI), matrix-assisted laser
desorption ionization (MALDI) or surface-enhanced laser desorption/ionization (SELDI)
as well as electrospray ionization (ESI) are currently the most widely used ionization
techniques for analyzing chemical structures in biological systems [2]. In the late 1980s,
with the introduction of soft ionization, protein analysis developed rapidly, revolutionizing
MS. In the late 1990s, the pioneering application of MS in microbiology [1] demonstrated
that intact bacterial cells could be distinguished using MALDI coupled to a time of flight
(TOF) analyser [3]. These achievements stimulated the fast development of MALDI–TOF
MS system approaches as promising tools for the microbial characterization of bacteria [4],
fungi [5], viruses [6], and even nematodes [7].

The MALDI–TOF MS system performs different proteomic strategies using intact or
digested proteins. The “top down strategy” is used for direct analysis of intact proteins,
proteoforms and post-translational protein modifications [8], whereas the “bottom up” is
used for mixtures of peptides derived from protein digestion (i.e., peptide sequencing).
MALDI–TOF MS systems represent a basic configuration workflow in a linear mode.
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Figure 1 presents a schematic overview divided into three compartments: (1) the ionization
source system (laser), (2) the mass analyser (TOF), and (3) the ion detector. First, the
sample for analysis is prepared by mixing with a matrix, an energy-absorbent, organic
compound solution. Then, after the mixture (matrix and sample) crystallize upon drying,
the sample is ionized using a laser beam. In the process of desorption and ionization
using the ionization source system, the molecules are converted to gas-phase ions and
individually charged [M+H]+, so that they can be manipulated by external electric and
magnetic fields. MALDI is based on a soft ionization method that preserves the integrity
of the sample without massive fragmentation [9]. Soft ionization allows the analysis of
proteins and peptides and large organic molecules (i.e., polymers, dendrimers) [10], which
tend to become brittle and fragmented in other ionization methods. Once the sample
molecules are ionized, the ions are arranged and separated based on their m/z ratio using
a mass analyser. For microbiological applications primarily, the TOF mass analyser is
used. Last, an ion detection system (detector) measures the different separated ions and
creates a mass spectrum, characterized by m/z ratios along with their relative abundance.
As a result, the mass spectrum represents individual protein profiles (likewise a peptide
mass fingerprints (PMF)) where different peaks correspond to different m/z ratios that can
then be searched for protein mass values against a database containing known microbial
isolates [11]. Therefore, the MALDI–TOF system identifies microorganisms using MS to
determine a spectrum unique for each protein.
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Microbial identification through MALDI–TOF MS presents multiple advantages. First,
it is based on intact proteins, which avoids time-consuming digestions, desalting and other
pre-treatments such as solid phase extraction while keeping good sensibility. Second, it has
high transmission efficiency, fast scan rates and very low m/z ratio detection limits [9,12].
Third, its analysis is low cost, despite the initial investment in expensive equipment [13].
Because of these characteristics, MALDI–TOF MS has revolutionized clinical diagnosis,
representing a fast and an effective method for the identification of bacterial profiles at
both, the genus and species taxonomic levels. This new approach is being establishing
as the preferred tool for identifying and characterizing microorganisms in microbiology
laboratories, more so than even 16S and 18S rRNA gene sequencing [9,11,14,15].

The first main disadvantage is one relates to the need for trained laboratory personnel,
beginning with the sample preparation [11]. The proper proportion between sample
and matrix, and therefore the crystallization of the mixture, is an essential if massive
fragmentation or even destruction of the sample is to be avoided. Moreover, bacterial
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age, the agar medium, bacteria culture atmosphere, the number of laser shots applied
and the averaged spectra per measurement could interfere with the quality of the results
and therefore to the proper identification of the sample [16]. The second disadvantage
of MALDI–TOF MS is that the identification of new species relies strongly on a complete
database [9].

In diagnostic microbiological laboratories, two functional MALDI–TOF systems
analyze intact proteins: (1) microflex® LT/SH MS or Biotyper (Bruker, Germany) and
(2) VITEK® MS (bioMérieux, France). In each case, the detection range of the TOF analyser
is quite similar, but each relies on its own kits and databases [10,17]. Nonetheless, the
identification accuracy of bacteria and fungi [18–21] is similarly good, but rather suscep-
tible to sample preparation and culture media steps. In addition to the main advantages
of simplicity and speed, the low analysis cost [13] has made MALDI–TOF MS a widely
implemented diagnostic tool. Speed and reliability provide better patient prognosis and
treatment, decreases hospitalization and reduces the risks associated with co-morbidity
and mortality. In this review, we present an overview of the most recent advances in the
field MALDI–TOF and proteomics focusing on applications for diagnosing infection.

2. Direct Microbial Identification from Human Samples

MALDI–TOF MS has recently been used in laboratories for the rapid identification of
microorganisms in emergency and inpatients, resulting in shorter hospital stays, particu-
larly in intensive care units [22]. Sepsis is a life-threatening organ dysfunction caused by an
unregulated host response to infection [23] and is the major cause of mortality from infec-
tious disease, according to Word Health Organization (https://www.who.int/news-room/
fact-sheets/detail/sepsis, accessed on 26 August 2020). Bacterial meningitis is a neurologi-
cal emergency. For both sepsis and meningitis, early diagnosis is vital for rapid initiation
of antimicrobial treatment [24]. Direct detection and identification of microorganisms from
blood and cerebrospinal fluid (CSF) are a relevant step.

Commercial protocols remain the reference procedures for the extraction of bacterial
proteins from direct samples [10,25]. However, more and more modified and in-house
methods have emerged to address several fundamental issues related to precision and
speed of identification. As discussed in the previous section, sample preparation and
an adequate method of protein extraction are key steps that may influence sensitivity,
resolution, and reproducibility. Poor sample preparation will lead to lower peak resolution
with a consequently lower sensitivity and reproducibility, since ion generation by MALDI–
TOF depends on an optimal ratio of matrix substance and analyte [10]. Therefore, it is
of the utmost importance to pretreat a sample properly considering that human fluids
contain proteins other than bacterial or fungal. These preliminary steps must drain and
separate blood and other human cells (i.e., haemoglobin), and selectively recover bacterial
proteins [24]; otherwise, a wrong or unknown identification will result.

The direct identification of a microorganism in blood, CSF or urine is rather a mat-
ter of standardization because it requires a greater minimal bacterial load compared to
other methods such as 16S rRNA gene sequencing or direct detection by Gram staining.
Numerous studies have compared in-house methods although they have not shown any
advantages over commercial ones. Most of them are based on the pre-treatment of samples
by lysis, centrifugation, filtration and concentration, singly or in combination, or by the
growth of monomicrobial cultures.

Currently, the most common commercial protocols for blood culture are (1) the
Sepsityper® kit (Bruker Daltonics, Bremen, Germany) [26] extensively used and based on
lysis and short centrifugation; (2) the VITEK® MS blood culture kit (bioMérieux) [27,28],
which collects bacteria using a filter; and (3) the rapid BACpro® II kit (Nittobo Medical Co.,
Tokyo, Japan), which uses cationic particles to collect microorganisms in a relatively short
runtime (approximately 15 min) [25,29,30]. On the other hand, modified in-house methods
are also based on a previous lysis with saponin [31,32] or differential centrifugations of
blood [33–35] prior to protein extraction to release and aid the separation of microorganisms
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and remove human proteins [17]. For example, Jakovljev and Berg [31] used a modified
lysis method with 5% saponin, an additional pre-extraction, followed by protein extraction
using 70% formic acid for best results [31]. The authors obtained identification levels of
99.3 and 96.6% with respect to genus and species, using low discrimination scores and
a short processing period of only 25 min (Figure 2). The aim of all were to remove the
multiple cells in blood samples that can interfere in the identification results.
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The processing of CSF for the diagnosis of meningitis works in a similar way to urine
samples (Figure 2) [10]. Before extraction with formic acid and acetonitrile, both are sub-
jected to low-speed centrifugation to eliminate human cells [10,17,36]. For the processing
of urine samples specifically, an initial flow cytometric scan is recommended to eliminate
negative urine and limit direct processing to urine with counts greater than 105 colony
forming units per millilitre (CFU/mL) [17,24,37]. Recently, various research groups have
proposed different extraction methods based on differential centrifugations [37,38], ultrafil-
tration [39], or a simple pre-treatment of samples with sodium-dodecyl-sulfate (SDS) [40,41].
A recent study conducted by Veron and colleagues [42] compared centrifugation (68.4%
of correct MALDI identification), urine filtration (78.9%) and 5 h bacterial cultivation on
solid culture media (84.2%), which demonstrated that a short culture step is the most
straightforward and efficient sample preparation method for fast and reliable identification
of uropathogens. However, none of the methods was able to improve the identification
accuracy of microorganisms (<95%) or overcome the obstacle of the diagnosis of urinary
infection linked to low colony counts (<104 CFU/mL) or bi-/poly-microbial infections,
though it is remarkable that the fast preliminary diagnosis took less than one hour.

Alternatively, a short incubation method on a solid medium was used by several clini-
cal laboratories [43–45], although it did not produce any advances in the clinical diagnosis.
Idelevich et al. [43], showed promising results with rapid identification at the species level
in 1.2, 18.6, 64.0, 96.5, and 98.8% of Gram-positive cocci, and 76.2, 95.2, 97.6, 97.6, and
97.6% of Gram-negative rods, with incubation times from blood culture samples of 2, 4, 6, 8,
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and 12 h, respectively. Despite the success with Gram-negative and Gram-positive bacteria,
direct identification of yeast and anaerobes failed, likely because both microorganisms
require long incubation times (around 48 h). Despite the advances, a current challenge
is the identification of microorganisms in polymicrobial cultures, representing a mixed
bacterial fingerprint [46]. For this, short incubation methods have been used as well, but
with low sensitivity (a low number of correctly microorganisms identified) [45]. There
also exists a commercial module, Bruker ®MBT Sepsityper IVD, but it only identifies
34.3% of microorganisms correctly [47]. Thus, major improvements are still needed for
polymicrobial blood cultures [48].

3. Microbial Identification Using Reference Databases and Open Free Libraries

Microorganism databases are the key component for the identification in MALDI–TOF
MS. Proprietary databases (i.e., Bruker) are continuously updated and increasing in size
as new microbial species are discovered and new annotations are made. In recent years,
open database platforms, spectrum libraries and computer tools have emerged and been
made available to the scientific community. Most of them are used to handling long
sequences of peptide data [15]. Although, the conventional clinical microbiologist would
find working with proprietary programs already in the operating system to be more
practical, comfortable and familiar, open-source software platforms, in combination with
proprietary ones such as OpenMS [49], allows for additional MS-based workflows and
user interfaces that must be considered for clinical diagnoses. The standardization of
protocols, the increase in the resources of spectrum libraries and databases, as well as the
development of more intuitive computer programs, is allowing the MALDI–TOF system to
consolidate itself as the method of choice for microbiological diagnosis [15] (Table 1).

There are two main platforms for commercial use: (1) MALDI BioTyper and (2) VITEK®

MS. Both provide a microbial diagnosis based on the detection and identification of low-
molecular-weight spectra ranging from 2 to 20 KDa, typically represented by ribosomal
proteins and a few housekeeping proteins [50]. They also show high levels of identi-
fication at the species level (S ~85%) [18,51] with MALDI BioTyper being better suited
for bacteria and yeast [51] and VITEK® MS (v3.0) being better suited for mycobacteria,
actinomycetes [51–53] and filamentous fungi [54]. The MALDI BioTyper and VITEK® MS
platforms include software programs to explore and analyze the acquired mass spectra
data. BioTyper and VITEK® platforms are continuously updating their databases with
discoveries of new specimens and annotations. These computer programs allow compar-
ison, analysis of spectra clusters for strain classification [55], dendrogram performance,
multidimensional analysis [56] and resistance determination using hydrolysis ratios [57,58].
The main difference and limitation between the platforms is in access to other networks
or databases, and the resources of their respective computer programs. Despite having
private access, BioTyper allows mass spectra and new identifications to be shared among
all users.

The BioTyper system, conceived and marketed exclusively by Bruker Daltonics, uses
its own database made up of more than 4000 entries (>3000 species of 540 genera). The
proprietary database is open to users and allows the creation and exchange with other
existing databases. Species identification is based on a numerical log score of identification
and consistency, ranging from 0 to 3 [10,59]. A good species-level identification corresponds
to values > 2.0, and a probable identification has a value between 2.30 and 3.0. At the genus
level, a reliable score is between 1.70 and 2.29 [10,59], and not reliable if between 0.0 and
1.69 [10]. The MALDI BioTyper software also performs automatic calibration and creation of
the main spectra of new clinical isolates [10]. The additional use of applications supporting
interactive inspection and comparison of large datasets, such as ClinProTools, increases the
precision of identification. For example, it can distinguish among S. pneumoniae, S. oralis
and S. mitis, in the Streptococcus viridans group [60]; it can type Streptococcus pyogenes [61];
and it can distinguish between methicillin-sensitive Staphylococcus aureus (MSSA)36 and
methicillin-resistant S. aureus (MRSA), as well as different MRSA clones [62,63]. Moreover,
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the BioTyper platform offers open libraries for enhanced accuracy identification (e.g.,
mycobacteria and filamentous fungi subtyping, or rapid and automatic calculation of intact
and hydrolysed antibiotic substances (MBT STAR-BL application)).

The VITEK® MS platform incorporates the SARAMIS database that uses SuperSpec-
tra [10] as a reference to match and identify user query mass spectra. It is based on the
mass spectra of at least 15 individual isolates [10] previously identified by 16S rRNA gene
sequencing analysis or Multi-locus Sequencing typing (MLST). Microbial identification is
based on the confidence interval (CI) percentage of the query mass spectra with respect
to the SuperSpectra reference, interpreting a good identification at the species level when
the CI is >95%, and not identifiable if it is not found in the database. Moreover, the Vitek
MS v3.0 platform offers grouping of spectral data or hierarchical taxonomic analysis [10],
permitting the identification of taxonomic changes in a population of microorganisms. For
example, it allows for the successful differentiation between MRSA and MSSA through
two MRSA marker peaks of (2305.6 and 3007.3 Da) and a single MSSA marker peak of
(6816.7 Da) [64], or the discrimination between Escherichia coli ST131, with a sensitivity of
86.6% and a specificity of 95.1% [65].

Both MS systems offer a research-use-only (RUO) module that allows the creation
of custom in-house libraries of mass spectra and provides workflow to detect of specific
resistance mechanisms. The most immediate and relevant application is its use in clinical
epidemiology, which is beginning to displace costly and laborious molecular methods
such as MLST or Pulsed Field Gel Electrophoresis (PFGE) [17]. In addition, they both
facilitate exportable and compatible mass spectral data, which generates more extensive
data processing on external mathematical and statistical open-source platforms. The stan-
dardization of protocols, increase in the resources of the spectrum libraries and databases,
and the development of more intuitive computer programs, is allowing the MALDI–TOF
system to consolidate itself as the preferred method for microbiological diagnosis [15]
(Table 1).

A recent advance is the new Bruker MALDI Biotyper® Sirius which goes beyond
microbial identification and is fully compatible with existing MALDI Biotyper® software,
libraries, and consumables. The MALDI–TOF MS used in positive-ion mode allows routine
microbial identification, while the negative-ion mode broadens the microbial research
applications such as lipid analysis. Lipidomics is a new “omic” that offers the rapid identi-
fication [66] of a mechanism of resistance, such as colistin resistance-related modifications
to lipid A in colistin-resistant bacteria [67,68]. The next step is to improve the diagnosis
of infections, using new libraries able to detect post-translational modifications (PTMs),
human proteins or metabolites.

4. MS Big Data and Machine Learning Applied to Clinical Diagnosis

As previously discussed, the categorization, differentiation, and identification of mi-
croorganisms in MALDI–TOF MS relies strongly on spectrum libraries to identify peptide
mass fingerprinting (PMF) generated from each microorganism. Even so, these databases
are far from being complete and thus represent, in many cases, an important drawback
because of missing or small-power PMF identifications. Alternatively, researchers have
tried to increase the discriminatory power of PMF by increasing the number of biomarker
peaks [14] using simple sonication techniques [69] up to short digestions with trypsin
or pre-treatments with lysozyme [70]. Certainly, previous sample separations by, e.g.,
liquid chromatography (LC) provided more complete information on the sample’s com-
position [71], but it required qualified technical personnel and a longer processing time,
which in turn resulted in a delayed diagnosis. Neither of these separation techniques has
been successfully implemented in clinical microbiology laboratories.

Nonetheless, the increasing amounts of publicly available MS platforms in open access
databases, mass spectrum libraries or analytical methods for visualization, standardization
and validation [72,73] (Table 1), together with automated colony picking in the labora-
tory [24], are improving the typing or characterization of strains and identification of
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microbes. A starting point for a beginner in MS data analysis is presented by Chong and
colleagues in their “Hitchiker’s guide” for MS bioinformatics analysis [74]. The use of
open sources for bioinformatic platforms like Bioconductor (http://bioconductor.org/,
accessed on 19 July 2021) are also a good starting point. There is also a wide range of math-
ematical and statistical programs that provide easy data handling: a mass spectral library,
peak detection, processing, and alignment, as well as statistical analysis [75] (Table 1). For
example, a quantification intensity count [76] is possible by generating reference mass
spectra using the median intensity of the aligned peaks of all spectra or by calibration
based on a total ion chromatogram (TIC) [76,77]. The semi-quantitative comparison of mass
peaks (associated with specific proteins), then allows the comparison of a microorganism
in different conditions, such as in urine and blood samples. Consequently, algorithms or
mathematical models could be extrapolated to monitor infection and even detect resistance
mechanisms early [58].

Other approaches are multidimensional analysis (MDS) or principal component anal-
ysis (PCA) (Table 1). MDS and PCA are mathematical approaches that use proximity
measures such as the correlation coefficient or Euclidean distance to generate a spatial
configuration of points in multidimensional space where distances between points reflect
the similarity among isolates. MDS and PCA analyses have been extensively used to
discover discriminative peaks [78] and identify potential sets of biomarkers [75,79] in a
statistically reliable way [80], as well as distinguish among different strain isolates [79]
from a large data set or selected genes or proteins [80,81].

Table 1. Overview of platforms for the analysis of big MS data of acquired mass spectra from MALDI–TOF MS. MDS:
Multi-dimensional Scaling; PCA: principal component analysis; QA/QC: Quality Assurance/Quality Control; SOM:
self-organization Map.

Platform Statistical Analysis Spectra Analysis Accepted
Formats URL Reference

BioNumerics

ANOVA, MANOVA, PCA,
MDS, SOM and other

statistical, parametric and
non-parametric tests.
Dendograms, cluster

analysis, bioclustering,
generation of

phylogenetic trees.
QA/QC.

Creation, identification and
classification (spectrum

libraries).
Pre-processing: optimization,

normalization, alignment,
subtraction, smoothing. Peak
detection, identification and

quantification.

mzML,
*.btmsp, *.txt

RAW

https://www.applied-
maths.com/applications
/maldi-tof-bacterial-ide
ntification (accessed on

19 July 2021)

Bionumerics™
software (Applied
Maths BVBA, Sint-
Martens-Lantem,

Belgium).

MaldiQUANT

Computational
framework in R language:

statistical analysis,
dendograms, clustering,
probability distributions,

quality control, etc.

Pre-processing: optimization,
normalization, alignment,

subtraction, smoothing. Peak
detection, identification,

and quantification.

mzML,
mzXLM,

imzML *.csv,
*.fid, *.tab

http://strimmerlab.org/
software/maldiquant/

(accessed on 19 July 2021)

Gibb S and
Strimmer [82]

Mass-Up

PCA, classification
analysis, biomarker

discovery, clustering and
bioclustering.

QA/QC.

Preprocessing: intensity
transformation, optimization,

alignment, subtraction,
smoothing and peak analysis.

Peak detection
and identification.

mzML,
mzXLM,

*.csv, *.muc

http://www.sing-group
.org/mass-up/ (accessed

on 19 July 2021)

López-Fernandez
et al. [83]

MATLAB

Regression, ANOVA,
PCA, multivariate

analysis, probability
distributions,

cluster analysis.

Pre-processing: optimization,
smoothing, alignment, signal

statistics, peak analysis,
envelope extraction.

Spectral analysis.

*.txt,
*.xls, *.xlsx

http:
//es.mathworks.com/p
roducts/matlab-online/

(accessed on 19 July 2021)

MATLAB®

software
(MathWorks Inc.,

Natick, MA, USA)

PEAKS Algorithms and support
for analysis.

Pre-processing: optimization,
normalization, alignment,

subtraction, smoothing, peak
analysis. Peak detection,

identification and quantification.
Sequence editor.

mzML,
mzXLM,

mzDATA,
MGF, ASCII

http:
//www.bioinfor.com/

(accessed on 19 July 2021)

Peaks® software
(Bioinformatics
Solutions Inc.,
Waterloo, ON,

Canada)

http://bioconductor.org/
https://www.applied-maths.com/applications/maldi-tof-bacterial-identification
https://www.applied-maths.com/applications/maldi-tof-bacterial-identification
https://www.applied-maths.com/applications/maldi-tof-bacterial-identification
https://www.applied-maths.com/applications/maldi-tof-bacterial-identification
http://strimmerlab.org/software/maldiquant/
http://strimmerlab.org/software/maldiquant/
http://www.sing-group.org/mass-up/
http://www.sing-group.org/mass-up/
http://es.mathworks.com/products/matlab-online/
http://es.mathworks.com/products/matlab-online/
http://es.mathworks.com/products/matlab-online/
http://www.bioinfor.com/
http://www.bioinfor.com/
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5. The State-of-the-Art Combining Approaches

Figure 3 presents a standard MS workflow with the exact identification of proteins and
their relative quantification that provides detailed knowledge of protein expression, mi-
croorganisms and parasites, and their final integration and interaction in the human body.

In the recent years, MS has gained importance for characterizing nanoparticles, which
has expanded the possibilities of MALDI–TOF MS [84–86] in the environmental sciences to
study, for example, the distribution, concentration and stability of silver and gold nanopar-
ticles in environmental water [87]. Research, using biological samples, are showing the
reliable detection of sulfides, drugs and other substances [88] with good limits, especially
for urine metabolites, e.g., cysteine and homocysteine with a detection range between 7 and
22 nanoMolar [89]. Chou et al. [90] have proposed a new clinical diagnostic approach using
magnetic antibody nanoparticles for the rapid detection of influenza virus subtypes [90],
while research led by Miotto [91] propose the use of maghemite nanoparticles for early
diagnosis of mastitis in bovine milk.

Another MALDI–TOF MS combined approach currently used by few clinical microbi-
ology laboratories is the Fourier Transform Infrared Spectroscopy (FTIRS), uses molecular
vibration fingerprints, primarily the C–O stretching of biomacromolecules, to determine the
molecular composition of a wide range of sample types [92]. By strain-specific absorbance
patterns in the infrared spectrum [93], FTIRS characterizes a microbial sample by reflecting
its biomolecular content to correlate with its genetic information [94]. FTIRS has been
successfully applied in many studies to discriminate among bacteria at different taxonomic
levels, (e.g., serogroup or serotype) and even at the strain level, to provide simple, quick,
high-throughput, cost-effective bacterial typing [95–97]. The IR Biotyper (Bruker Daltonics,
Bremen, Germany) is being used in the field of microbial strain typing, such as for the
study of nosocomial outbreaks and their dynamics to prevent the spread of pathogens
inside the hospitals [93].

During the last decade, MALDI–TOF has found application in biological systems [98]
with the incorporation of imaging, the so called Mass Spectrometry Imaging or MALDI
imaging [99]. It evolved rapidly and is commonly used in the diagnosis of inflammatory
and infectious diseases in human or animal tissues, [100], including samples such as
bacterial biofilm [101] or mammalians [102]. Imaging MS is being continuously updated
and introducing new techniques for the diagnosis of disease [98], as well as for the diagnosis
of infection. MS imaging could offer an especially useful diagnostic tool for skin and soft
tissue infections as well as for the diagnosis of papillomavirus [103].

Last, polymerase chain reaction (PCR)-based MS was first described in 2011 by Yi et al.
in the identification of human papillomavirus [104], and ever since most of the viral
identification approaches have combined both techniques. On one hand, PCR is used
for multiplexing and amplification, whereas MALDI–TOF is used to identify and analyse
the amplified sample [15,105]. Therefore, PCR-based MS is an effective, low-cost tool for
identifying various poliovirus serotypes [106], common respiratory viruses (CRV) [107]
and the hepatovirus [15]. It can also be used for typing or subtyping influenza viruses [108]
and even specific viral biomarkers to distinguish infected and healthy cells [106]. PCR-
based MS also appears to be potentially effective in detecting resistance to drugs such as
ganciclovir in transplant recipients infected with cytomegalovirus (CMV) [109].



Microorganisms 2021, 9, 1539 9 of 19
Microorganisms 2021, 9, x FOR PEER REVIEW 9 of 20 
 

 

 
Figure 3. Representation of a standard MS workflow exemplified by SARS-CoV-2 detection in nasal mucous secretion. 
This figure was originally published in Nature Biotechnology. Nachtigall, F.M., Pereira, A., Trofymchuk, O.S. et al. Detection 
of SARS-CoV-2 in nasal swabs using MALDI-MS. Nat Biotechnol 38, 1168–1173 (2020). https://doi.org/10.1038/s41587-020-
0644-7 ©Copyright Clearance Center. Reprint from [110]. 

6. Current Challenges: Viral Identification and Antimicrobial Resistance 
6.1. Building Virus Spectral Libraries, Getting a Fast Diagnosis of SARS-2 

Few studies have so far been conducted on identifying and detecting viruses partly 
due to the high molecular weight of viral proteins (>20 KDa) and because viral 
identification still relies strongly on cell culture and antigen or nucleic acid detection. In 
addition, extraction protocols for viral proteins frequently require of a previous step 
involving a cell substrate cultured in vitro, which could alter the proteins and take several 
days. Afterwards, amplification is used for a fast and sensitive diagnosis, and PCR is 
frequently the method of choice [106,111,112]. Other current limitations besides 
contamination and time relate to the low quantity of viral proteins in the biological 
sample, where human proteins are the most abundant, and to their rapid mutation, which 
complicates the design of specific spectral libraries [112]. 

A recent 2014 study from Calderaro et al. discriminated among three different 
serotypes of Sabin poliovirus, tuning the range of MALDI–TOF to identify differential 
PMF peaks for the VP4 capsid [106]. Two years later, the same research group created a 
main spectrum profile (MSP) to identify CRVs, including influenza A and B; adenovirus 
C; parainfluenza types 1, 2, and 3; respiratory syncytial virus (RSV); echovirus; CMV; and 
human metapneumovirus. The MSP was based on the mass spectra of infected samples 
(differential peaks) that had previously been compared with uninfected cells [113]. 

At present with the current COVID-19 pandemic, the need for a rapid diagnosis of 
SARS-CoV-2 has generated a rapid evolution and optimization of clinical methods, 
including MALDI–TOF MS. Because the gold standard and main diagnosis tool for SARS-
CoV-2, the RT-PCR, is continuously producing false negatives, questions are being raised 
about whether MS-based technology, such as MassARRAY, which demonstrates superior 
sensitivity and discrimination of mutations within the viral genome, should overtake it 
[114,115]. MS-based methods using swab and saliva samples are reporting promising 
results. Illes RK et al. [116] achieved a multifaceted clinical MALDI–TOF MS screening 
test, primarily (but not limited to) SARS-CoV-2 by detecting viral envelope glycoproteins, 

Figure 3. Representation of a standard MS workflow exemplified by SARS-CoV-2 detection in nasal mucous secretion. This
figure was originally published in Nature Biotechnology. Nachtigall, F.M., Pereira, A., Trofymchuk, O.S. et al. Detection of
SARS-CoV-2 in nasal swabs using MALDI-MS. Nat. Biotechnol. 38, 1168–1173 (2020). https://doi.org/10.1038/s41587-020-0
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6. Current Challenges: Viral Identification and Antimicrobial Resistance
6.1. Building Virus Spectral Libraries, Getting a Fast Diagnosis of SARS-2

Few studies have so far been conducted on identifying and detecting viruses partly due
to the high molecular weight of viral proteins (>20 KDa) and because viral identification
still relies strongly on cell culture and antigen or nucleic acid detection. In addition,
extraction protocols for viral proteins frequently require of a previous step involving
a cell substrate cultured in vitro, which could alter the proteins and take several days.
Afterwards, amplification is used for a fast and sensitive diagnosis, and PCR is frequently
the method of choice [106,111,112]. Other current limitations besides contamination and
time relate to the low quantity of viral proteins in the biological sample, where human
proteins are the most abundant, and to their rapid mutation, which complicates the design
of specific spectral libraries [112].

A recent 2014 study from Calderaro et al. discriminated among three different
serotypes of Sabin poliovirus, tuning the range of MALDI–TOF to identify differential
PMF peaks for the VP4 capsid [106]. Two years later, the same research group created a
main spectrum profile (MSP) to identify CRVs, including influenza A and B; adenovirus
C; parainfluenza types 1, 2, and 3; respiratory syncytial virus (RSV); echovirus; CMV; and
human metapneumovirus. The MSP was based on the mass spectra of infected samples
(differential peaks) that had previously been compared with uninfected cells [113].

At present with the current COVID-19 pandemic, the need for a rapid diagnosis
of SARS-CoV-2 has generated a rapid evolution and optimization of clinical methods,
including MALDI–TOF MS. Because the gold standard and main diagnosis tool for SARS-
CoV-2, the RT-PCR, is continuously producing false negatives, questions are being raised
about whether MS-based technology, such as MassARRAY, which demonstrates superior
sensitivity and discrimination of mutations within the viral genome, should overtake
it [114,115]. MS-based methods using swab and saliva samples are reporting promising
results. Illes RK et al. [116] achieved a multifaceted clinical MALDI–TOF MS screening
test, primarily (but not limited to) SARS-CoV-2 by detecting viral envelope glycoproteins,
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including peaks of spike protein fragments S1, S2b, and S2a. The method offers ease of
sampling, speed of analysis, and a much lower cost of testing.

Another proof of concept is the combination of MS-based methods with machine learn-
ing (ML) and artificial intelligence (AI) [117], which is also demonstrating reliable detection
of SARS-CoV-2 in swab samples. Tran et al. [118] evaluated an automated ML platform, Ma-
chine Intelligence Learning Optimizer (MILO), combined with MALDI–TOF MS for rapid
high-throughput screening of COVID-19 and showing promising accuracy (96.6–98.3%),
sensitivity (positive percent agreement of 98.5–100%), and specificity (negative percent
agreement of 94–96%) [118], respectively, for two different ML models. Similarly, Delofeu
et al. analyzed 236 nasopharyngeal swab samples, and the subsequent mass spectra data
was used to build different ML models, showing a performance of >90% accuracy, sensi-
tivity, and specificity. They compared extreme gradient boosting trees and support vector
machines (SVMs), and the best results were obtained from an SVM. As a last example,
research by Nachtigall et al. [110] evaluated six different ML models that demonstrated
high accuracy and reliability with the highest accuracy (93.9%) presented by a SVM, with
7% false positives and 5% false negatives (Figure 3).

6.2. Identifying Mechanisms of Resistance

Another critical responsibility for MALDI–TOF MS in clinical microbiological diagno-
sis is in determining resistance mechanisms. Currently, these methods require long and
laborious incubations and hydrolysis protocols (1–4 h) [10,119] with no greater advantages
compared to rapid agglutination, immunochromatographic methods (15–30 min) or auto-
mated phenotypic tests [10,120]. Some authors advocated the use of selective extraction
methods to recover cell wall components [15] or periplasmic and membrane proteins
(commonly involved in more than half of bacterial resistance mechanisms), in addition
to using different matrices to detect them [15,119]. On the other hand, the construction
of large spectra libraries with bacterial resistant PMF would be a simple alternative that
would allow comparative studies into the role of various components involved in antibiotic
resistance [119].

The detection of antibiotic resistance in parallel with bacterial identification is the un-
reachable goal in a routine diagnosis. As is the case with viral identification, most bacterial
proteins involved in resistance as well as virulence have a molecular weight > 20 KDa,
which puts it out of the usual range of the clinical use of MALDI–TOF MS. However, soft-
ware such as MBT-STAR-LAB, provided by Bruker, facilitates the detection of for example,
carbapenem-resistant isolates by identifying carbapenem hydrolysis identification peaks,
not the protein enzyme. Another program, CinProTools (Bruker Daltonics, Germany) [35],
detects MRSA by overlapping mass spectra to characterize a specific common peak. For
example, MRSA-detecting peptides, such as phenol-soluble modulin (PSM-mec), which are
linked to the class A mec gene complex, are present in MRSA strain SCCmec cassette types
III and VIII, and are automatically interpreted by the MBT Subtyping Module. However,
any of these proposed methods is time-consuming and might delay diagnosis by at least
24 h.

Nix et al. developed a satisfactory method to identify bacteria and resistance simulta-
neously. Briefly, the authors incubated the samples directly from positive blood cultures
at different antibiotic concentrations on the surface of the MALDI target for 4 h at 37 ◦C
in a humidity chamber. Afterwards the medium was removed and an on-target protein
extraction was performed with formic acid before adding a matrix with an internal stan-
dard as a quality control [121]. The robustness and reproducibility of this direct-on-target
microdroplet growth assay (DOT–MGA) proved to be a rapid and accurate identification
tool applicable to a broad range of microorganisms and antimicrobial resistance. It also
demonstrated its capacity for automation, especially for determining clinical samples di-
rectly [122,123]. The main limitations were standard assay conditions, such as humidity,
medium removal, MALDI–TOF MS settings, internal control, and spectra analysis [124].
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7. An MS-Systems Biology Approach: The Future of Identification

Until now, clinical development has been directly adopted from proteomic or inter-
atomic studies, with additional extensive sample preparation steps (e.g., binding, DIGE,
isobaric labeling, LC, 2D-LC, and nanoLC). Although it is difficult to predict how MS-
based approaches will develop, the future is exciting, especially in the area of life sciences
relating to viruses, host-pathogen interactions and vaccines. Along with the evolution
of system biology, MS is expected to improve understanding of how viruses enter cells,
how bacteria and virus defeat immunological barriers and which processes arrest cellular
metabolism [113]. Systems biology is becoming a major component for understanding
infection, due to its interdisciplinary nature and association with high-performance tech-
niques. Moreover, data management of these systems, like any other field [125], can easily
be implemented in microbiological diagnostic laboratories [126]. Even though the promises
of systems biology are many [127], the underlying molecular mechanisms [127] must be ex-
perimentally verified using other approaches, such as transcriptomics or proteomics [126].

Currently, a wide variety of bioinformatics platforms have been developed that allow
the analysis and visualization of protein–protein interaction networks in which interactive
diagrams where nodes represent the proteins, and links represent the interactions [126].
Some platforms constitute only a few microorganisms, such as E. coli, and more recently
S. aureus (Table 2), but there exist also other platforms having an extensive number of
microorganisms, such as STRING one of the most extensive database [128]. STRING
provides a simple graphic interface and easy interaction navigation as well as the ability
to export of graphs and coordinates. Protein–protein networks are useful for revealing
interactions between virulence factors or resistance proteins (typically with high molecular
weight) with proteins of lower molecular weight detectable by MALDI–TOF MS (Figure 4).

The major limitations of applying a system-biology approach in clinical laboratories
are the poor reproducibility and the lack of external validation, which impede progress in
refining the identification of microbial species and streamlining antimicrobial resistance
profiling. Open-access platforms that share workflows, and databases that rely on growth
conditions (medium, time or atmosphere), are needed to optimize network information.

Table 2. Overview of platforms with application for protein analysis.

Platform Database What Is Applications URL Reference

AureoLib/Aurewiki Staphylococcus.
aureus

AureoLib is a library to
provide easy and

intuitive access to protein
synthesis data derived

from various proteomics
experiments

Aureolib provides protein
synthesis data derived from

various proteomic experiments
(adaptation processes);

Aurewiki provides functional
and expression

data (pangenome).

http://www.aureolib.de
(accessed on 19 July 2021)

Fuchs et al.
[129]

BioGrid Multiplex

The Biological General
Repository for Interaction
Datasets (BioGRID) is a
public database focused

on specific biological
processes with

disease relevance.

Repository of genetic and
protein interactions, chemical

associations, and
post-translational

modifications, from model
organisms and humans.

http://thebiogrid.org/
(accessed on 19 July 2021)

Oughtred et al.
[130,131]

Cytoscape Multiplex Cytoscape is an open
source software platform

Visualization of the molecular
interaction networks and
biological pathways, and

integration of these networks
with annotations, gene
expression profiles and

other data.

http://www.cytoscape.
org/index.html (accessed

on 19 July 2021)

Shannon et al.
[132], Smoot

ME et al. [133]

PeptideShaker Multiplex

PeptideShaker is a search
engine platform for the

identification of proteins
from multiple searches

and de novo engines.

Protein identification with
functional data.

http://compomics.gith
ub.io/projects/peptide-s
haker.html (accessed on

19 July 2021)

Vaudel et al.
[134]

http://www.aureolib.de
http://thebiogrid.org/
http://www.cytoscape.org/index.html
http://www.cytoscape.org/index.html
http://compomics.github.io/projects/peptide-shaker.html
http://compomics.github.io/projects/peptide-shaker.html
http://compomics.github.io/projects/peptide-shaker.html
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Table 2. Cont.

Platform Database What Is Applications URL Reference

PeptideAtlas Multiplex

PeptideAtlas is a
multi-organism, publicly
accessible compendium

of peptides identified in a
large set of tandem MS

proteomics experiments.

Protein identification, full
annotation, database, data

repository, peptides sequence,
mapping and storing

among others

http://www.peptideatl
as.org/ (accessed on 19

July 2021)

Desiere et al.
[135]

REACTOME Multiplex

REACTOME is an
open-access, manually

curated and
peer-reviewed

pathway database.

Visualization, interpretation
and analysis of pathways and

interactions in the human
biological system.

http:
//www.reactome.org/

(accessed on 19 July 2021)

Fragegat et al.
[136]

STRING Multiplex

STRING is a database of
well-known protein

interactions, including
direct (physical) and
indirect (functional)

associations, aggregated
from other

(primary) databases.

Protein–protein interaction
identification, pathway

analysis, network
connectivity, functional

prioritazation.

https://string-db.org/
(accessed on 19 July 2021)

Snel et al. [137]
Szklarczyk
et al. [128]
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Figure 4. A possible computational workflow for data analysis from MALDI–TOF MS using the STRING database. Example
of a network of interactions for the TcaA protein involved in Staphylococcus aureus resistance to glycopeptides using STRING.
The membrane-associated protein is co-expressed upstream with the peripheral membrane protein FmtA which affects the
methicillin resistance. TcaAB is responsible for susceptibility to glycopeptides, especially teicoplanin, in S. aureus [138,139].
The dysfunction or absence of either of these two proteins TcaAB is associated with resistance to glycopeptides and is subject
to regulation by the two-component system VraSR (S: sensor, R: regulator) [138,140].

8. Conclusions

More than a decade after the arrival of MALDI–TOF MS in clinical microbiology
laboratories, MALDI has become among the most conventional molecular methods of for
microbiological diagnosis. Part of this success can be attributed to its speed, reliability, and
low cost. Nonetheless, traditional bacteriological methods like quality control of clinical
samples, Gram-staining results or colony growth observations are still important because
they are the first and confirmatory diagnoses, respectively.

The MALDI–TOF system represents an important technique not only for microbial
identification, but also for the epidemiological control of virulent strains and possible out-
breaks or emergencies, in which rapid identification leads to a rapid response that ensures

http://www.peptideatlas.org/
http://www.peptideatlas.org/
http://www.reactome.org/
http://www.reactome.org/
https://string-db.org/
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the control of the emergency. Future combinations with other systems or approaches, such
as system biology offer a reliable quick and reliable diagnosis, but there is still much to do
to standardize methods and analyses.

The evolution of pulse ionization techniques, together with the rapid evolution of
improved-resolution infrastructure and instrumentation will open the door for a powerful
third-generation MALDI–TOF MS with better peak quality, higher mass accuracy, and
greater identification sensitivity. The next step in microbiological diagnosis could even be
the protein sequencing of microorganisms by tandem MSs.
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