TY - JOUR AU - Jackson, H.R. AU - Zandstra, J. AU - Menikou, S. AU - Hamilton, M.S. AU - McArdle, A.J. AU - Fischer, R. AU - Thorne, A.M. AU - Huang, H. AU - Tanck, M.W. AU - Jansen, M.H. AU - De, T. AU - Agyeman, P.K.A. AU - Von Both, U. AU - Carrol, E.D. AU - Emonts, M. AU - Eleftheriou, I. AU - Van der Flier, M. AU - Fink, C. AU - Gloerich, J. AU - De Groot, R. AU - Moll, H.A. AU - Pokorn, M. AU - Pollard, A.J. AU - Schlapbach, L.J. AU - Tsolia, M.N. AU - Usuf, E. AU - Wright, V.J. AU - Yeung, S. AU - Zavadska, D. AU - Zenz, W. AU - Coin, L.J.M. AU - Casals-Pascual, C. AU - Cunnington, A.J. AU - MartinĂ³n Torres, Federico AU - Herberg, J.A. AU - de Jonge, M.I. AU - Levin, M. AU - Kuijpers, T.W. AU - Kaforou, M. PY - 2023 SN - 2589-7500 UR - http://hdl.handle.net/20.500.11940/20985 AB - BACKGROUND: Differentiating between self-resolving viral infections and bacterial infections in children who are febrile is a common challenge, causing difficulties in identifying which individuals require antibiotics. Studying the host response to... LA - eng KW - Humans KW - Child KW - Proteomics KW - Bacterial Infections KW - Biomarkers KW - Virus Diseases KW - Anti-Bacterial Agents TI - A multi-platform approach to identify a blood-based host protein signature for distinguishing between bacterial and viral infections in febrile children (PERFORM): a multi-cohort machine learning study DO - 10.1016/s2589-7500(23)00149-8 T2 - The Lancet. Digital health M2 - e774 KW - AS Santiago KW - CHUS VL - 5 ER -