TY - JOUR AU - Coll, L. AU - Pareto, D. AU - Carbonell-Mirabent, P. AU - Cobo-Calvo, Á. AU - Arrambide, G. AU - Vidal-Jordana, Á. AU - Comabella, M. AU - Castilló, J. AU - Rodríguez-Acevedo, B. AU - Zabalza, A. AU - Galán, I. AU - Midaglia ., Luciana Soledad AU - Nos, C. AU - Salerno, A. AU - Auger, C. AU - Alberich, M. AU - Río, J. AU - Sastre-Garriga, J. AU - Oliver, A. AU - Montalban, X. AU - Rovira, À. AU - Tintoré, M. AU - Lladó, X. AU - Tur, C. PY - 2023 SN - 2213-1582 UR - http://hdl.handle.net/20.500.11940/21309 AB - The application of convolutional neural networks (CNNs) to MRI data has emerged as a promising approach to achieving unprecedented levels of accuracy when predicting the course of neurological conditions, including multiple sclerosis, by means of... LA - eng KW - Humans KW - Multiple Sclerosis KW - Deep Learning KW - Magnetic Resonance Imaging KW - Brain KW - Attention KW - Blindness TI - Deciphering multiple sclerosis disability with deep learning attention maps on clinical MRI DO - 10.1016/j.nicl.2023.103376 T2 - NeuroImage: Clinical KW - AS Vigo KW - CHUVI VL - 38 ER -