TY - JOUR AU - Mosquera Orgueira, Adrián AU - Pérez Encinas, Manuel Mateo AU - Diaz Varela, N.A. AU - Mora, E. AU - Díaz-Beyá, M. AU - Montoro, M.J. AU - Pomares, H. AU - Ramos, F. AU - Tormo, M. AU - Jerez, A. AU - Nomdedeu, J.F. AU - De Miguel Sanchez, C. AU - Leonor, A. AU - Cárcel, P. AU - Cedena Romero, M.T. AU - Xicoy, B. AU - Rivero, E. AU - Del Orbe Barreto, R.A. AU - Diez-Campelo, M. AU - Benlloch, L.E. AU - Crucitti, D. AU - Valcárcel, D. PY - 2023 SN - 2572-9241 UR - http://hdl.handle.net/20.500.11940/21699 AB - Myelodysplastic neoplasms (MDS) are a heterogeneous group of hematological stem cell disorders characterized by dysplasia, cytopenias, and increased risk of acute leukemia. As prognosis differs widely between patients, and treatment options vary from... LA - eng TI - Machine Learning Improves Risk Stratification in Myelodysplastic Neoplasms: An Analysis of the Spanish Group of Myelodysplastic Syndromes DO - 10.1097/hs9.0000000000000961 T2 - HemaSphere M2 - E961 KW - AS Santiago KW - CHUS KW - AS Santiago KW - CHUS VL - 7 ER -