Mostrar el registro sencillo del ítem

dc.contributor.authorNistal Nuño, Beatriz 
dc.date.accessioned2022-04-26T07:44:01Z
dc.date.available2022-04-26T07:44:01Z
dc.date.issued2020
dc.identifier.issn1679-4508
dc.identifier.otherhttps://www.ncbi.nlm.nih.gov/pubmed/33237246es
dc.identifier.urihttp://hdl.handle.net/20.500.11940/16541
dc.description.abstractOBJECTIVE: To propose a preliminary artificial intelligence model, based on artificial neural networks, for predicting the risk of nosocomial infection at intensive care units. METHODS: An artificial neural network is designed that employs supervised learning. The generation of the datasets was based on data derived from the Japanese Nosocomial Infection Surveillance system. It is studied how the Java Neural Network Simulator learns to categorize these patients to predict their risk of nosocomial infection. The simulations are performed with several backpropagation learning algorithms and with several groups of parameters, comparing their results through the sum of the squared errors and mean errors per pattern. RESULTS: The backpropagation with momentum algorithm showed better performance than the backpropagation algorithm. The performance improved with the xor. README file parameter values compared to the default parameters. There were no failures in the categorization of the patients into their risk of nosocomial infection. CONCLUSION: While this model is still based on a synthetic dataset, the excellent performance observed with a small number of patterns suggests that using higher numbers of variables and network layers to analyze larger volumes of data can create powerful artificial neural networks, potentially capable of precisely anticipating nosocomial infection at intensive care units. Using a real database during the simulations has the potential to realize the predictive ability of this model.en
dc.rightsAtribución 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.meshRisk Assessment*
dc.subject.meshHumans*
dc.subject.meshIntensive Care Units*
dc.subject.meshAPACHE*
dc.subject.meshAlgorithms*
dc.titleA neural network for prediction of risk of nosocomial infection at intensive care units: a didactic preliminary modelen
dc.typeJournal Articlees
dc.authorsophosNistal-Nuño, B.
dc.identifier.doi10.31744/einstein_journal/2020AO5480
dc.identifier.pmid33237246
dc.identifier.sophos39263
dc.issue.number18es
dc.journal.titleEINSTEIN (SAO PAULO)es
dc.organizationServizo Galego de Saúde::Estrutura de Xestión Integrada (EOXI)::EOXI de Santiago de Compostela - Complexo Hospitalario Universitario de Santiago de Compostela::Anestesioloxía e reanimaciónes
dc.page.initialeAO5480es
dc.rights.accessRightsopenAccess
dc.subject.decsalgoritmos*
dc.subject.decsevaluación de riesgos*
dc.subject.decshumanos*
dc.subject.decsunidades de cuidados intensivos*
dc.subject.decsíndice APACHE*
dc.subject.keywordCHUSes
dc.typefidesArtículo Originales
dc.typesophosArtículo Originales
dc.volume.number18es


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional