Mostrar el registro sencillo del ítem

dc.contributor.authorMosquera Orgueira, Adrián
dc.contributor.authorDíaz Arias, José 
dc.contributor.authorSerrano Martín, R.
dc.contributor.authorPortela Piñeiro, V.
dc.contributor.authorCid López, Miguel
dc.contributor.authorPeleteiro Raindo, Andrés
dc.contributor.authorBao Pérez, Laura
dc.contributor.authorGonzález Pérez, Marta Sonia 
dc.contributor.authorPérez Encinas, Manuel Mateo 
dc.contributor.authorFraga Rodríguez, Máximo Francisco 
dc.contributor.authorVallejo Llamas, Juan Carlos
dc.contributor.authorBello López, José Luis 
dc.date.accessioned2025-08-12T10:21:25Z
dc.date.available2025-08-12T10:21:25Z
dc.date.issued2023
dc.identifier.citationMosquera Orgueira A, Díaz Arías JÁ, Serrano Martín R, Portela Piñeiro V, Cid López M, Peleteiro Raíndo A, et al. A prognostic model based on gene expression parameters predicts a better response to bortezomib-containing immunochemotherapy in diffuse large B-cell lymphoma. Frontiers in Oncology. 2023;13.
dc.identifier.issn2234-943X
dc.identifier.otherhttps://sergas.portalcientifico.es//documentos/64995bb471c692789f1e0729
dc.identifier.urihttp://hdl.handle.net/20.500.11940/20339
dc.description.abstractDiffuse Large B-cell Lymphoma (DLBCL) is the most common type of aggressive lymphoma. Approximately 60% of fit patients achieve curation with immunochemotherapy, but the remaining patients relapse or have refractory disease, which predicts a short survival. Traditionally, risk stratification in DLBCL has been based on scores that combine clinical variables. Other methodologies have been developed based on the identification of novel molecular features, such as mutational profiles and gene expression signatures. Recently, we developed the LymForest-25 profile, which provides a personalized survival risk prediction based on the integration of transcriptomic and clinical features using an artificial intelligence system. In the present report, we studied the relationship between the molecular variables included in LymForest-25 in the context of the data released by the REMoDL-B trial, which evaluated the addition of bortezomib to the standard treatment (R-CHOP) in the upfront setting of DLBCL. For this, we retrained the machine learning model of survival on the group of patients treated with R-CHOP (N=469) and then made survival predictions for those patients treated with bortezomib plus R-CHOP (N=459). According to these results, the RB-CHOP scheme achieved a 30% reduction in the risk of progression or death for the 50% of DLBCL patients at higher molecular risk (p-value 0.03), potentially expanding the effectiveness of this treatment to a wider patient population as compared with other previously defined risk groups.en
dc.language.isoeng
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleA prognostic model based on gene expression parameters predicts a better response to bortezomib-containing immunochemotherapy in diffuse large B-cell lymphoma
dc.typeArticle
dc.rights.licenseAtribución 4.0 Internacional*
dc.authorsophosMosquera Orgueira, A.
dc.authorsophosDíaz Arías, J.A
dc.authorsophosSerrano Martín, R.
dc.authorsophosPortela Piñeiro, V.
dc.authorsophosCid López, M.
dc.authorsophosPeleteiro Raíndo, A.
dc.authorsophosBao Pérez, L.
dc.authorsophosGonzález Pérez, M.S.
dc.authorsophosPérez Encinas, M.M.
dc.authorsophosFraga Rodríguez, M.F.
dc.authorsophosVallejo Llamas, J.C.
dc.authorsophosBello López, J.L.
dc.identifier.doi10.3389/FONC.2023.1157646
dc.identifier.sophos64995bb471c692789f1e0729
dc.journal.titleFrontiers in Oncologyen
dc.relation.publisherversionhttps://doi.org/10.3389/fonc.2023.1157646
dc.rights.accessRightsopenAccess*
dc.subject.keywordAS Santiago AP
dc.subject.keywordCHUS
dc.subject.keywordIDIS
dc.typefidesArtículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis)
dc.typesophosArtículo Original
dc.volume.number13


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional