Mostrar el registro sencillo del ítem

dc.contributor.authorMosquera Orgueira, Adrián
dc.contributor.authorCid López, Miguel
dc.contributor.authorPeleteiro Raindo, Andrés
dc.contributor.authorAbuin Blanco, Aitor
dc.contributor.authorDíaz Arias, José 
dc.contributor.authorGonzález Pérez, Marta Sonia 
dc.contributor.authorAntelo Rodríguez, Beatriz
dc.contributor.authorBao Pérez, Laura
dc.contributor.authorFerreiro Ferro, Roi
dc.contributor.authorAliste Santos, Carlos 
dc.contributor.authorPérez Encinas, Manuel Mateo 
dc.contributor.authorFraga Rodríguez, Máximo Francisco 
dc.contributor.authorCerchione, C.
dc.contributor.authorMozas, P.
dc.contributor.authorBello López, José Luis 
dc.date.accessioned2025-08-12T11:26:47Z
dc.date.available2025-08-12T11:26:47Z
dc.date.issued2022
dc.identifier.citationMosquera Orgueira A, Cid López M, Peleteiro Raíndo A, Abuín Blanco A, Díaz Arias JÁ, González Pérez MS, et al. Personally Tailored Survival Prediction of Patients With Follicular Lymphoma Using Machine Learning Transcriptome-Based Models. Frontiers in Oncology. 2021;11.
dc.identifier.issn2234-943X
dc.identifier.otherhttps://sergas.portalcientifico.es//documentos/61ff065713638e1cfc27763e
dc.identifier.urihttp://hdl.handle.net/20.500.11940/20372
dc.description.abstractFollicular Lymphoma (FL) has a 10-year mortality rate of 20%, and this is mostly related to lymphoma progression and transformation to higher grades. In the era of personalized medicine it has become increasingly important to provide patients with an optimal prediction about their expected outcomes. The objective of this work was to apply machine learning (ML) tools on gene expression data in order to create individualized predictions about survival in patients with FL. Using data from two different studies, we were able to create a model which achieved good prediction accuracies in both cohorts (c-indexes of 0.793 and 0.662 in the training and test sets). Integration of this model with m7-FLIPI and age rendered high prediction accuracies in the test set (cox c-index 0.79), and a simplified approach identified 4 groups with remarkably different outcomes in terms of survival. Importantly, one of the groups comprised 27.35% of patients and had a median survival of 4.64 years. In summary, we have created a gene expression-based individualized predictor of overall survival in FL that can improve the predictions of the m7-FLIPI score.en
dc.description.sponsorshipFunding Article processinge charges have been payed with funds from the Fundacion Galega de Hematoloxia e Hemoterapia.
dc.language.isoeng
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titlePersonally Tailored Survival Prediction of Patients With Follicular Lymphoma Using Machine Learning Transcriptome-Based Models
dc.typeArticle
dc.rights.licenseAtribución 4.0 Internacional*
dc.authorsophosMosquera Orgueira, A.
dc.authorsophosCid López, M.
dc.authorsophosPeleteiro Raíndo, A.
dc.authorsophosAbuín Blanco, A.
dc.authorsophosDíaz Arias, J.Á.
dc.authorsophosGonzález Pérez, M.S.
dc.authorsophosAntelo Rodríguez, B.
dc.authorsophosBao Pérez, L.
dc.authorsophosFerreiro Ferro, R.
dc.authorsophosAliste Santos, C.
dc.authorsophosPérez Encinas, M.M.
dc.authorsophosFraga Rodríguez, M.F.
dc.authorsophosCerchione, C.
dc.authorsophosMozas, P.
dc.authorsophosBello López, J.L.
dc.identifier.doi10.3389/FONC.2021.705010
dc.identifier.sophos61ff065713638e1cfc27763e
dc.journal.titleFrontiers in Oncologyen
dc.relation.projectIDFundacion Galega de Hematoloxia e Hemoterapia
dc.relation.publisherversionhttps://doi.org/10.3389/fonc.2021.705010
dc.rights.accessRightsopenAccess*
dc.subject.keywordAS Santiago AP
dc.subject.keywordCHUS
dc.subject.keywordIDIS
dc.subject.keywordAS Lugo AP
dc.subject.keywordHULA
dc.typefidesArtículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis)
dc.typesophosArtículo Original
dc.volume.number11


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional