Mostrar el registro sencillo del ítem

dc.contributor.authorTubío Fungueiriño, María
dc.contributor.authorCernadas, E.
dc.contributor.authorGonçalves, Ó.F.
dc.contributor.authorSegalas, C.
dc.contributor.authorBertolín, S.
dc.contributor.authorMar-Barrutia, L.
dc.contributor.authorReal, E.
dc.contributor.authorFernández-Delgado, M.
dc.contributor.authorMenchón, J.M.
dc.contributor.authorCarvalho, S.
dc.contributor.authorAlonso, P.
dc.contributor.authorCarracedo, A.
dc.contributor.authorFernández Prieto, Montserrat
dc.date.accessioned2025-08-14T11:51:54Z
dc.date.available2025-08-14T11:51:54Z
dc.date.issued2022
dc.identifier.citationTubío-Fungueiriño M, Cernadas E, Gonçalves ÓF, Segalas C, Bertolín S, Mar-Barrutia L, et al. Viability Study of Machine Learning-Based Prediction of COVID-19 Pandemic Impact in Obsessive-Compulsive Disorder Patients. Frontiers in Neuroinformatics. 2022;16.
dc.identifier.issn1662-5196
dc.identifier.otherhttps://portalcientifico.sergas.gal/documentos/6223bb785af2aa3bfdb860bc*
dc.identifier.urihttp://hdl.handle.net/20.500.11940/20430
dc.description.abstractBackground: Machine learning modeling can provide valuable support in different areas of mental health, because it enables to make rapid predictions and therefore support the decision making, based on valuable data. However, few studies have applied this method to predict symptoms' worsening, based on sociodemographic, contextual, and clinical data. Thus, we applied machine learning techniques to identify predictors of symptomatologic changes in a Spanish cohort of OCD patients during the initial phase of the COVID-19 pandemic. Methods: 127 OCD patients were assessed using the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) and a structured clinical interview during the COVID-19 pandemic. Machine learning models for classification (LDA and SVM) and regression (linear regression and SVR) were constructed to predict each symptom based on patient's sociodemographic, clinical and contextual information. Results: A Y-BOCS score prediction model was generated with 100% reliability at a score threshold of ± 6. Reliability of 100% was reached for obsessions and/or compulsions related to COVID-19. Symptoms of anxiety and depression were predicted with less reliability (correlation R of 0.58 and 0.68, respectively). The suicidal thoughts are predicted with a sensitivity of 79% and specificity of 88%. The best results are achieved by SVM and SVR. Conclusion: Our findings reveal that sociodemographic and clinical data can be used to predict changes in OCD symptomatology. Machine learning may be valuable tool for helping clinicians to rapidly identify patients at higher risk and therefore provide optimized care, especially in future pandemics. However, further validation of these models is required to ensure greater reliability of the algorithms for clinical implementation to specific objectives of interest.en
dc.description.sponsorshipMT-F, AC, and MF-P acknowledged Fundacion Maria Jose Jove for the support of this work. This study has been funded by Instituto de Salud Carlos III (COV20_00622) and cofunded by European Union (ERDF) A way of making Europe and Covid funds of Fundacion Amancio Ortega and Banco de Santander. EC and MF-D were funded by Xunta de Galicia under accreditation 2019-2022 ED431G-2019/04. SC receives scholarship and support from the Portuguese Foundation for Science and Technology (FCT), co-funded through COMPETE 2020 -PO Competitividade e Internacionalizacao/Portugal 2020/European Union, FEDER (Fundos Europeus Estruturais e de Investimento -FEEI) under the number:PTDC/PSI-ESP/29701/2017. CS, SB, LM-B, ER, JM, and PA acknowledged Carlos III Health Institute (PI16/00950, PI18/00856) and FEDER funds (A way to build Europe), as well as CERCA Programme/Generalitat de Catalunya for institutional support.en
dc.language.isoeng
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleViability Study of Machine Learning-Based Prediction of COVID-19 Pandemic Impact in Obsessive-Compulsive Disorder Patients*
dc.typeArticleen
dc.authorsophosTubío-Fungueiriño, M. M.
dc.authorsophosCernadas, E.
dc.authorsophosGonçalves, Ó F.
dc.authorsophosSegalas, C.
dc.authorsophosBertolín, S.
dc.authorsophosMar-Barrutia, L.
dc.authorsophosReal, E.
dc.authorsophosFernández-Delgado, M.
dc.authorsophosMenchón, J. M.
dc.authorsophosCarvalho, S.
dc.authorsophosAlonso, P.
dc.authorsophosCarracedo, A.
dc.authorsophosFernández, Prieto
dc.identifier.doi10.3389/fninf.2022.807584
dc.identifier.sophos6223bb785af2aa3bfdb860bc
dc.issue.numbernull
dc.journal.titleFrontiers in Neuroinformatics*
dc.page.initialnull
dc.relation.projectIDInstituto de Salud Carlos III [COV20_00622]; European Union (ERDF) A way of making Europe; Portuguese Foundation for Science and Technology (FCT); COMPETE 2020 -PO Competitividade e Internacionalizacao/Portugal 2020/European Union, FEDER (Fundos Europeus Estruturais e de Investimento -FEEI) [PTDC/PSI-ESP/29701/2017]; Xunta de Galicia [2019-2022 ED431G-2019/04]; Carlos III Health Institute [PI16/00950, PI18/00856]; Fundacion Amancio Ortega; Banco de Santander; Fundacion Maria Jose Jove; Fundação para a Ciência e a Tecnologia [PTDC/PSI-ESP/29701/2017] Funding Source: FCT
dc.relation.publisherversionhttps://www.frontiersin.org/articles/10.3389/fninf.2022.807584/pdf;https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2022.807584/pdfes
dc.rights.accessRightsopenAccess
dc.subject.keywordAS Santiagoes
dc.subject.keywordIDISes
dc.typefidesArtículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis)es
dc.typesophosArtículo Originales
dc.volume.number16


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional