Predictive Power of the
Pérez Zapata, A.I.; Rodríguez Cuéllar, E.; de la Fuente Bartolomé, M.; Martín-Arriscado Arroba, C.; García Morales, M.T.; Loinaz Segurola, C.; Giner Nogueras, M.; Tejido Sánchez, Á.; Ruiz López, P.; Ferrero Herrero, E.; Zarco Pleguezuelos, A.; Romero Simó, M.; Caballero Bouza, A.; Parés Martinez, D.; Julián Ibáñez, J.F.; Balibrea del Castillo, J.M.; Morales Sevillano, X.; Díaz-Zorita Aguilar, B.; Martín Román, L.; Gomez Ruiz, M.; Fernández Miguel, T.; Cagigas Fernandez, C.; Moreno Bargueiras, A.; Cano Valderrama, Oscar; Alonso Rivera, D.; Gutiérrez Samaniego, M.; Elia Guedea, M.; Córdoba Diaz, E.; Gracia Solanas, J.A.; Bañuls Matoses, A.; Macero, Á.; Sánchez López, J.D.; Vaquero Pérez, M.A.; Rojo López, J.A.; Lima Pinto, F.; Bra Insa, E.; Rodríguez Prieto, I.; Padilla Zegarra, E.D.; Franco Chacon, M.; Memba Ikuga, R.; Jorba Martin, R.; Alcaide Matas, F.; Troncoso Pereira, P.; Soria Aledo, V.; Pérez Guarinos, C.V.; Genzor Rios, S.; Dobón Rascón, M.Á.; Nuñez Fernández, Sandra; Valerias Domínguez, E.; García García, M.; Zambrana Campos, V.; Rebasa Cladera, P.; Artés Caselles, M.; Cea Soriano, M.; Gambí Pisonero, D.; Jiménez de los Galanes, S.; Frutos Bernal, M.D.; Delegido García, A.; Gómez Pérez, B.; Montero Zorrilla, C.; Cortés Climent, J.; Vallejo Bernad, C.; Bustamante Mosquera, R.; Blázquez, M.; Muriel López, J.; García Pérez, J.C.; Ocaña Jiménez, J.; Paseiro Crespo, G.; Pardo Martínez, C.; García Nebreda, M.; Fernández Cebrián, J.M.; Casanova Durán, V.; Ferrer Márquez, M.; Aguiló Lucía, J.

Identifiers
Identifiers
Files view or download
Files view or download
Date issued
2022Journal title
Patient Safety in Surgery
Type of content
Article
Abstract
Background: In spite of the global implementation of standardized surgical safety checklists and evidence-based practices, general surgery remains associated with a high residual risk of preventable perioperative complications and adverse events. This study was designed to validate the hypothesis that a new "Trigger Tool" represents a sensitive predictor of adverse events in general surgery. Methods: An observational multicenter validation study was performed among 31 hospitals in Spain. The previously described "Trigger Tool" based on 40 specific triggers was applied to validate the predictive power of predicting adverse events in the perioperative care of surgical patients. A prediction model was used by means of a binary logistic regression analysis. Results: The prevalence of adverse events among a total of 1,132 surgical cases included in this study was 31.53%. The "Trigger Tool" had a sensitivity and specificity of 86.27% and 79.55% respectively for predicting these adverse events. A total of 12 selected triggers of overall 40 triggers were identified for optimizing the predictive power of the "Trigger Tool". Conclusions: The "Trigger Tool" has a high predictive capacity for predicting adverse events in surgical procedures. We recommend a revision of the original 40 triggers to 12 selected triggers to optimize the predictive power of this tool, which will have to be validated in future studies.

Related items
Showing related items by Title, author or keyword.