Mostrar el registro sencillo del ítem

dc.contributor.authorSadik, M.*
dc.contributor.authorLópez Urdaneta, Jesús Miguel *
dc.contributor.authorUlén, J.*
dc.contributor.authorEnqvist, O.*
dc.contributor.authorAndersson, P.-O.*
dc.contributor.authorKumar, R.*
dc.contributor.authorTrägårdh, E.*
dc.date.accessioned2025-09-08T09:15:09Z
dc.date.available2025-09-08T09:15:09Z
dc.date.issued2023
dc.identifier.citationSadik M, López-Urdaneta J, Ulén J, Enqvist O, Andersson P-O, Kumar R, et al. Artificial Intelligence Increases the Agreement among Physicians Classifying Focal Skeleton/Bone Marrow Uptake in Hodgkin's Lymphoma Patients Staged with [18F]FDG PET/CT-a Retrospective Study. Nuclear Medicine and Molecular Imaging. 2023;57(2):110-6.
dc.identifier.issn1869-3482
dc.identifier.otherhttps://portalcientifico.sergas.gal//documentos/636fcd5aad78e65ef2d8a571
dc.identifier.urihttp://hdl.handle.net/20.500.11940/21100
dc.description.abstractPurpose: Classification of focal skeleton/bone marrow uptake (BMU) can be challenging. The aim is to investigate whether an artificial intelligence-based method (AI), which highlights suspicious focal BMU, increases interobserver agreement among a group of physicians from different hospitals classifying Hodgkin's lymphoma (HL) patients staged with [18F]FDG PET/CT. Methods: Forty-eight patients staged with [18F]FDG PET/CT at Sahlgenska University Hospital between 2017 and 2018 were reviewed twice, 6 months apart, regarding focal BMU. During the second time review, the 10 physicians also had access to AI-based advice regarding focal BMU. Results: Each physician's classifications were pairwise compared with the classifications made by all the other physicians, resulting in 45 unique pairs of comparisons both without and with AI advice. The agreement between the physicians increased significantly when AI advice was available, which was measured as an increase in mean Kappa values from 0.51 (range 0.25-0.80) without AI advice to 0.61 (range 0.19-0.94) with AI advice (p = 0.005). The majority of the physicians agreed with the AI-based method in 40 (83%) of the 48 cases. Conclusion: An AI-based method significantly increases interobserver agreement among physicians working at different hospitals by highlighting suspicious focal BMU in HL patients staged with [18F]FDG PET/CT.
dc.languageeng
dc.rightsAttribution 4.0 International (CC BY 4.0)*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleArtificial Intelligence Increases the Agreement among Physicians Classifying Focal Skeleton/Bone Marrow Uptake in Hodgkin's Lymphoma Patients Staged with [18F]FDG PET/CT-a Retrospective Study
dc.typeArtigo
dc.authorsophosSadik, M.; López-Urdaneta, J.; Ulén, J.; Enqvist, O.; Andersson, P.-O.; Kumar, R.; Trägårdh, E.
dc.identifier.doi10.1007/s13139-022-00765-3
dc.identifier.sophos636fcd5aad78e65ef2d8a571
dc.issue.number2
dc.journal.titleNuclear Medicine and Molecular Imaging*
dc.organizationServizo Galego de Saúde::Áreas Sanitarias (A.S.) - Hospital Público da Mariña::Medicina nuclear
dc.page.initial110
dc.page.final116
dc.relation.publisherversionhttps://doi.org/10.1007/s13139-022-00765-3
dc.rights.accessRightsopenAccess*
dc.subject.keywordAS Lugo
dc.subject.keywordHP A Mariña
dc.typefidesArtículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis)
dc.typesophosArtículo Original
dc.volume.number57


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution 4.0 International (CC BY 4.0)
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International (CC BY 4.0)