Mostrar el registro sencillo del ítem
Barrier Height Prediction by Machine Learning Correction of Semiempirical Calculations
| dc.contributor.author | García-Andrade, X. | * |
| dc.contributor.author | García Tahoces, Pablo | * |
| dc.contributor.author | Pérez-Ríos, J. | * |
| dc.contributor.author | Martínez Núñez, E. | * |
| dc.date.accessioned | 2025-09-08T11:44:02Z | |
| dc.date.available | 2025-09-08T11:44:02Z | |
| dc.date.issued | 2023 | |
| dc.identifier.citation | García-Andrade X, García Tahoces P, Pérez-Ríos J, Martínez Núñez E. Barrier Height Prediction by Machine Learning Correction of Semiempirical Calculations. Journal of Physical Chemistry A. 2023;127(10):2274-83. | |
| dc.identifier.issn | 1520-5215 | |
| dc.identifier.other | https://portalcientifico.sergas.gal//documentos/642b3757a1c8a315fd233136 | |
| dc.identifier.uri | http://hdl.handle.net/20.500.11940/21137 | |
| dc.description.abstract | Different machine learning (ML) models are proposed in the present work to predict density functional theory-quality barrier heights (BHs) from semiempirical quantum mechanical (SQM) calculations. The ML models include a multitask deep neural network, gradient-boosted trees by means of the XGBoost interface, and Gaussian process regression. The obtained mean absolute errors are similar to those of previous models considering the same number of data points. The ML corrections proposed in this paper could be useful for rapid screening of the large reaction networks that appear in combustion chemistry or in astrochemistry. Finally, our results show that 70% of the features with the highest impact on model output are bespoke predictors. This custom-made set of predictors could be employed by future ?-ML models to improve the quantitative prediction of other reaction properties. | |
| dc.description.sponsorship | This work was partially supported by Conselleria de Cultura, Educacion e Ordenacion Universitaria (Grupo de referencia competitiva ED431C 2021/40) and by Ministerio de Ciencia e Innovacion through Grant #PID2019-107307RB-I00. J.P.-R. acknowledges the support of the Simons Foundation. | |
| dc.language | eng | |
| dc.rights | Attribution 4.0 International (CC BY 4.0) | * |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
| dc.title | Barrier Height Prediction by Machine Learning Correction of Semiempirical Calculations | |
| dc.type | Artigo | |
| dc.authorsophos | García-Andrade, X.; García Tahoces, P.; Pérez-Ríos, J.; Martínez Núñez, E. | |
| dc.identifier.doi | 10.1021/acs.jpca.2c08340 | |
| dc.identifier.sophos | 642b3757a1c8a315fd233136 | |
| dc.issue.number | 10 | |
| dc.journal.title | Journal of Physical Chemistry A | * |
| dc.page.initial | 2274 | |
| dc.page.final | 2283 | |
| dc.relation.projectID | Conselleria de Cultura, Educacion e Ordenacion Universitaria [ED431C 2021/40] | |
| dc.relation.projectID | Ministerio de Ciencia e Innovacion [PID2019-107307RB-I00] | |
| dc.relation.projectID | Simons Foundation | |
| dc.relation.publisherversion | https://doi.org/10.1021/acs.jpca.2c08340 | |
| dc.rights.accessRights | openAccess | * |
| dc.typefides | Artículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis) | |
| dc.typesophos | Artículo Original | |
| dc.volume.number | 127 |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International (CC BY 4.0)







