Mostrar el registro sencillo del ítem

dc.contributor.authorWidera, P.*
dc.contributor.authorWelsing, P.M.J.*
dc.contributor.authorDanso, S.O.*
dc.contributor.authorPeelen, S.*
dc.contributor.authorKloppenburg, M.*
dc.contributor.authorLoef, M.*
dc.contributor.authorMarijnissen, A.C.*
dc.contributor.authorvan Helvoort, E.M.*
dc.contributor.authorBlanco García, Francisco*
dc.contributor.authorMagalhaes Silva, Joana Cristina*
dc.contributor.authorBerenbaum, F.*
dc.contributor.authorHaugen, I.K.*
dc.contributor.authorBay-Jensen, A.-C.*
dc.contributor.authorMobasheri, A.*
dc.contributor.authorLadel, C.*
dc.contributor.authorLoughlin, J.*
dc.contributor.authorLafeber, F.P.J.G.*
dc.contributor.authorLalande, A.*
dc.contributor.authorLarkin, J.*
dc.contributor.authorWeinans, H.*
dc.contributor.authorBacardit, J.*
dc.date.accessioned2025-09-08T12:14:07Z
dc.date.available2025-09-08T12:14:07Z
dc.date.issued2023
dc.identifier.citationWidera P, Welsing PMJ, Danso SO, Peelen S, Kloppenburg M, Loef M, et al. Development and validation of a machine learning-supported strategy of patient selection for osteoarthritis clinical trials: the IMI-APPROACH study. Osteoarthritis and Cartilage Open. 2023;5(4).
dc.identifier.issn2665-9131
dc.identifier.otherhttps://portalcientifico.sergas.gal//documentos/64f6355866ccc641d10d6bb1
dc.identifier.urihttp://hdl.handle.net/20.500.11940/21231
dc.description.abstractObjectives: To efficiently assess the disease-modifying potential of new osteoarthritis treatments, clinical trials need progression-enriched patient populations. To assess whether the application of machine learning results in patient selection enrichment, we developed a machine learning recruitment strategy targeting progressive patients and validated it in the IMI-APPROACH knee osteoarthritis prospective study. Design: We designed a two-stage recruitment process supported by machine learning models trained to rank candidates by the likelihood of progression. First stage models used data from pre-existing cohorts to select patients for a screening visit. The second stage model used screening data to inform the final inclusion. The effectiveness of this process was evaluated using the actual 24-month progression. Results: From 3500 candidate patients, 433 with knee osteoarthritis were screened, 297 were enrolled, and 247 completed the 2-year follow-up visit. We observed progression related to pain (P, 30%), structure (S, 13%), and combined pain and structure (P ?+ ?S, 5%), and a proportion of non-progressors (N, 52%) ?15% lower vs an unenriched population. Our model predicted these outcomes with AUC of 0.86 [95% CI, 0.81-0.90] for pain-related progression and AUC of 0.61 [95% CI, 0.52-0.70] for structure-related progression. Progressors were ranked higher than non-progressors for P ?+ ?S (median rank 65 vs 143, AUC = 0.75), P (median rank 77 vs 143, AUC = 0.71), and S patients (median rank 107 vs 143, AUC = 0.57). Conclusions: The machine learning-supported recruitment resulted in enriched selection of progressive patients. Further research is needed to improve structural progression prediction and assess this strategy in an interventional trial.
dc.description.sponsorshipThe research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under Grant Agreement no.115770, resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies' in kind contribution. Seewww.imi.europa.euandwww.approachproject.eu. This communication reflects the views of the authors and neither IMI nor the European Union and EFPIA are liable for any use that may be made of the information contained herein.The funder of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the article.
dc.languageeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleDevelopment and validation of a machine learning-supported strategy of patient selection for osteoarthritis clinical trials: the IMI-APPROACH study
dc.typeArtigo
dc.authorsophosWidera, P.; Welsing, P.M.J.; Danso, S.O.; Peelen, S.; Kloppenburg, M.; Loef, M.; Marijnissen, A.C.; van Helvoort, E.M.; Blanco, F.J.; Magalhães, J.; Berenbaum, F.; Haugen, I.K.; Bay-Jensen, A.-C.; Mobasheri, A.; Ladel, C.; Loughlin, J.; Lafeber, F.P.J.G.; Lalande, A.; Larkin, J.; Weinans, H.; Bacardit, J.
dc.identifier.doi10.1016/j.ocarto.2023.100406
dc.identifier.sophos64f6355866ccc641d10d6bb1
dc.issue.number4
dc.journal.titleOsteoarthritis and Cartilage Open*
dc.organizationServizo Galego de Saúde::Áreas Sanitarias (A.S.) - Complexo Hospitalario Universitario A Coruña::Reumatoloxía
dc.organizationServizo Galego de Saúde::Áreas Sanitarias (A.S.) - Instituto de Investigación Biomédica de A Coruña (INIBIC)::Análises clínicas
dc.relation.projectIDInnovative Medicines Initiative Joint Undertaking [115770]
dc.relation.projectIDEuropean Union
dc.relation.projectIDEFPIA companies
dc.relation.projectIDMRC [MR/P020941/1] Funding Source: UKRI
dc.relation.projectIDMedical Research Council [MR/P020941/1] Funding Source: researchfish
dc.relation.publisherversionhttps://doi.org/10.1016/j.ocarto.2023.100406
dc.rights.accessRightsopenAccess*
dc.subject.keywordAS A Coruña
dc.subject.keywordCHUAC
dc.subject.keywordAS A Coruña
dc.subject.keywordINIBIC
dc.typefidesArtículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis)
dc.typesophosArtículo Original
dc.volume.number5


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International