Mostrar el registro sencillo del ítem
Development and validation of a machine learning-supported strategy of patient selection for osteoarthritis clinical trials: the IMI-APPROACH study
dc.contributor.author | Widera, P. | * |
dc.contributor.author | Welsing, P.M.J. | * |
dc.contributor.author | Danso, S.O. | * |
dc.contributor.author | Peelen, S. | * |
dc.contributor.author | Kloppenburg, M. | * |
dc.contributor.author | Loef, M. | * |
dc.contributor.author | Marijnissen, A.C. | * |
dc.contributor.author | van Helvoort, E.M. | * |
dc.contributor.author | Blanco García, Francisco | * |
dc.contributor.author | Magalhaes Silva, Joana Cristina | * |
dc.contributor.author | Berenbaum, F. | * |
dc.contributor.author | Haugen, I.K. | * |
dc.contributor.author | Bay-Jensen, A.-C. | * |
dc.contributor.author | Mobasheri, A. | * |
dc.contributor.author | Ladel, C. | * |
dc.contributor.author | Loughlin, J. | * |
dc.contributor.author | Lafeber, F.P.J.G. | * |
dc.contributor.author | Lalande, A. | * |
dc.contributor.author | Larkin, J. | * |
dc.contributor.author | Weinans, H. | * |
dc.contributor.author | Bacardit, J. | * |
dc.date.accessioned | 2025-09-08T12:14:07Z | |
dc.date.available | 2025-09-08T12:14:07Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Widera P, Welsing PMJ, Danso SO, Peelen S, Kloppenburg M, Loef M, et al. Development and validation of a machine learning-supported strategy of patient selection for osteoarthritis clinical trials: the IMI-APPROACH study. Osteoarthritis and Cartilage Open. 2023;5(4). | |
dc.identifier.issn | 2665-9131 | |
dc.identifier.other | https://portalcientifico.sergas.gal//documentos/64f6355866ccc641d10d6bb1 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11940/21231 | |
dc.description.abstract | Objectives: To efficiently assess the disease-modifying potential of new osteoarthritis treatments, clinical trials need progression-enriched patient populations. To assess whether the application of machine learning results in patient selection enrichment, we developed a machine learning recruitment strategy targeting progressive patients and validated it in the IMI-APPROACH knee osteoarthritis prospective study. Design: We designed a two-stage recruitment process supported by machine learning models trained to rank candidates by the likelihood of progression. First stage models used data from pre-existing cohorts to select patients for a screening visit. The second stage model used screening data to inform the final inclusion. The effectiveness of this process was evaluated using the actual 24-month progression. Results: From 3500 candidate patients, 433 with knee osteoarthritis were screened, 297 were enrolled, and 247 completed the 2-year follow-up visit. We observed progression related to pain (P, 30%), structure (S, 13%), and combined pain and structure (P ?+ ?S, 5%), and a proportion of non-progressors (N, 52%) ?15% lower vs an unenriched population. Our model predicted these outcomes with AUC of 0.86 [95% CI, 0.81-0.90] for pain-related progression and AUC of 0.61 [95% CI, 0.52-0.70] for structure-related progression. Progressors were ranked higher than non-progressors for P ?+ ?S (median rank 65 vs 143, AUC = 0.75), P (median rank 77 vs 143, AUC = 0.71), and S patients (median rank 107 vs 143, AUC = 0.57). Conclusions: The machine learning-supported recruitment resulted in enriched selection of progressive patients. Further research is needed to improve structural progression prediction and assess this strategy in an interventional trial. | |
dc.description.sponsorship | The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under Grant Agreement no.115770, resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies' in kind contribution. Seewww.imi.europa.euandwww.approachproject.eu. This communication reflects the views of the authors and neither IMI nor the European Union and EFPIA are liable for any use that may be made of the information contained herein.The funder of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the article. | |
dc.language | eng | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.title | Development and validation of a machine learning-supported strategy of patient selection for osteoarthritis clinical trials: the IMI-APPROACH study | |
dc.type | Artigo | |
dc.authorsophos | Widera, P.; Welsing, P.M.J.; Danso, S.O.; Peelen, S.; Kloppenburg, M.; Loef, M.; Marijnissen, A.C.; van Helvoort, E.M.; Blanco, F.J.; Magalhães, J.; Berenbaum, F.; Haugen, I.K.; Bay-Jensen, A.-C.; Mobasheri, A.; Ladel, C.; Loughlin, J.; Lafeber, F.P.J.G.; Lalande, A.; Larkin, J.; Weinans, H.; Bacardit, J. | |
dc.identifier.doi | 10.1016/j.ocarto.2023.100406 | |
dc.identifier.sophos | 64f6355866ccc641d10d6bb1 | |
dc.issue.number | 4 | |
dc.journal.title | Osteoarthritis and Cartilage Open | * |
dc.organization | Servizo Galego de Saúde::Áreas Sanitarias (A.S.) - Complexo Hospitalario Universitario A Coruña::Reumatoloxía | |
dc.organization | Servizo Galego de Saúde::Áreas Sanitarias (A.S.) - Instituto de Investigación Biomédica de A Coruña (INIBIC)::Análises clínicas | |
dc.relation.projectID | Innovative Medicines Initiative Joint Undertaking [115770] | |
dc.relation.projectID | European Union | |
dc.relation.projectID | EFPIA companies | |
dc.relation.projectID | MRC [MR/P020941/1] Funding Source: UKRI | |
dc.relation.projectID | Medical Research Council [MR/P020941/1] Funding Source: researchfish | |
dc.relation.publisherversion | https://doi.org/10.1016/j.ocarto.2023.100406 | |
dc.rights.accessRights | openAccess | * |
dc.subject.keyword | AS A Coruña | |
dc.subject.keyword | CHUAC | |
dc.subject.keyword | AS A Coruña | |
dc.subject.keyword | INIBIC | |
dc.typefides | Artículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis) | |
dc.typesophos | Artículo Original | |
dc.volume.number | 5 |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International
