Mostrar o rexistro simple do ítem
Comprehensive analysis of clinical data for COVID-19 outcome estimation with machine learning models
dc.contributor.author | Iglesias Morís, Daniel | * |
dc.contributor.author | de Moura Ramos, Jose Joaquim | * |
dc.contributor.author | Marcos Rodríguez, Pedro Jorge | * |
dc.contributor.author | Míguez Rey, Enrique | * |
dc.contributor.author | Novo Buján, Jorge | * |
dc.contributor.author | Ortega Hortas, Marcos | * |
dc.date.accessioned | 2025-09-08T12:18:39Z | |
dc.date.available | 2025-09-08T12:18:39Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Morís DI, de Moura J, Marcos PJ, Rey EM, Novo J, Ortega M. Comprehensive analysis of clinical data for COVID-19 outcome estimation with machine learning models. Biomedical Signal Processing and Control. 2023;84. | |
dc.identifier.issn | 1746-8108 | |
dc.identifier.other | https://portalcientifico.sergas.gal//documentos/6433d25fe8f2fa0e62f2b2f2 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11940/21255 | |
dc.description.abstract | COVID-19 is a global threat for the healthcare systems due to the rapid spread of the pathogen that causes it. In such situation, the clinicians must take important decisions, in an environment where medical resources can be insufficient. In this task, the computer-aided diagnosis systems can be very useful not only in the task of supporting the clinical decisions but also to perform relevant analyses, allowing them to understand better the disease and the factors that can identify the high risk patients. For those purposes, in this work, we use several machine learning algorithms to estimate the outcome of COVID-19 patients given their clinical information. Particularly, we perform 2 different studies: the first one estimates whether the patient is at low or at high risk of death whereas the second estimates if the patient needs hospitalization or not. The results of the analyses of this work show the most relevant features for each studied scenario, as well as the classification performance of the considered machine learning models. In particular, the XGBoost algorithm is able to estimate the need for hospitalization of a patient with an AUC-ROC of 0.8415±0.0217 while it can also estimate the risk of death with an AUC-ROC of 0.7992±0.0104. Results have demonstrated the great potential of the proposal to determine those patients that need a greater amount of medical resources for being at a higher risk. This provides the healthcare services with a tool to better manage their resources. | |
dc.description.sponsorship | & nbsp;This research was funded by ISCIII, Government of Spain, DTS18/00136 research project; Ministerio de Ciencia e Innovacion y Universidades, Government of Spain, RTI2018-095894-B-I00 research project; Ministerio de Ciencia e Innovacion, Government of Spain through the research project with reference PID2019-108435RB-I00; CCEU, Xunta de Galicia through the predoctoral grant contract ref. ED481A 2021/196; and Grupos de Referencia Competitiva, grant ref. ED431C 2020/24; Axencia Galega de Innovacion (GAIN) , Xunta de Galicia, grant ref. IN845D 2020/38; CITIC, Centro de Investigacion de Galicia ref. ED431G 2019/01, receives financial support from CCEU, Xunta de Galicia, through the ERDF (80%) and Secretarta Xeral de Universidades (20%) . Funding for open access charge: Universidade da Coruna/CISUG. | |
dc.language | eng | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.title | Comprehensive analysis of clinical data for COVID-19 outcome estimation with machine learning models | |
dc.type | Artigo | |
dc.authorsophos | Morís, D.I.; de Moura, J.; Marcos, P.J.; Rey, E.M.; Novo, J.; Ortega, M. | |
dc.identifier.doi | 10.1016/j.bspc.2023.104818 | |
dc.identifier.sophos | 6433d25fe8f2fa0e62f2b2f2 | |
dc.journal.title | Biomedical Signal Processing and Control | * |
dc.organization | Instituto de Investigación Biomédica de A Coruña (INIBIC) | |
dc.organization | Servizo Galego de Saúde::Áreas Sanitarias (A.S.) - Instituto de Investigación Biomédica de A Coruña (INIBIC) | |
dc.organization | Servizo Galego de Saúde::Áreas Sanitarias (A.S.) - Complexo Hospitalario Universitario A Coruña::Xestión sanitaria e dirección | |
dc.organization | Servizo Galego de Saúde::Áreas Sanitarias (A.S.) - Complexo Hospitalario Universitario A Coruña::Medicina interna | |
dc.organization | Instituto de Investigación Biomédica de A Coruña (INIBIC) | |
dc.organization | Instituto de Investigación Biomédica de A Coruña (INIBIC) | |
dc.relation.projectID | ISCIII, Government of Spain [DTS18/00136] | |
dc.relation.projectID | Ministerio de Ciencia e Innovacion y Universidades, Government of Spain [RTI2018-095894-B-I00] | |
dc.relation.projectID | Ministerio de Ciencia e Innovacion, Government of Spain [PID2019-108435RB-I00] | |
dc.relation.projectID | CCEU, Xunta de Galicia [ED481A 2021/196] | |
dc.relation.projectID | Grupos de Referencia Competitiva [ED431C 2020/24] | |
dc.relation.projectID | Axencia Galega de Innovacion (GAIN) , Xunta de Galicia | |
dc.relation.projectID | CITIC, Centro de Investigacion de Galicia [IN845D 2020/38] | |
dc.relation.projectID | CCEU, Xunta de Galicia, through the ERDF | |
dc.relation.projectID | Secretarta Xeral de Universidades | |
dc.relation.projectID | Universidade da Coruna/CISUG | |
dc.relation.projectID | [ED431G 2019/01] | |
dc.relation.publisherversion | https://doi.org/10.1016/j.bspc.2023.104818 | |
dc.rights.accessRights | openAccess | * |
dc.subject.keyword | INIBIC | |
dc.subject.keyword | AS A Coruña | |
dc.subject.keyword | INIBIC | |
dc.subject.keyword | AS A Coruña | |
dc.subject.keyword | CHUAC | |
dc.subject.keyword | AS A Coruña | |
dc.subject.keyword | CHUAC | |
dc.subject.keyword | INIBIC | |
dc.subject.keyword | INIBIC | |
dc.typefides | Artículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis) | |
dc.typesophos | Artículo Original | |
dc.volume.number | 84 |
Ficheiros no ítem
Este ítem aparece na(s) seguinte(s) colección(s)
A non ser que se indique outra cousa, a licenza do ítem descríbese comoAttribution-NonCommercial-NoDerivatives 4.0 International
