Mostrar el registro sencillo del ítem

dc.contributor.authorIglesias Morís, Daniel*
dc.contributor.authorSuárez Hervella, Álvaro*
dc.contributor.authorRouco Maseda, José*
dc.contributor.authorNovo Buján, Jorge*
dc.contributor.authorOrtega Hortas, Marcos*
dc.date.accessioned2025-09-08T12:21:19Z
dc.date.available2025-09-08T12:21:19Z
dc.date.issued2023
dc.identifier.citationMorís DI, Hervella ÁS, Rouco J, Novo J, Ortega M. Context encoder transfer learning approaches for retinal image analysis. Computers in Biology and Medicine. 2023;152.
dc.identifier.issn1879-0534
dc.identifier.otherhttps://portalcientifico.sergas.gal//documentos/63b996dd4386723d2da3786d
dc.identifier.urihttp://hdl.handle.net/20.500.11940/21269
dc.description.abstractDuring the last years, deep learning techniques have emerged as powerful alternatives to solve biomedical image analysis problems. However, the training of deep neural networks usually needs great amounts of labeled data to be done effectively. This is even more critical in the case of biomedical imaging due to the added difficulty of obtaining data labeled by experienced clinicians. To mitigate the impact of data scarcity, one of the most commonly used strategies is transfer learning. Nevertheless, the success of this approach depends on the effectiveness of the available pre-training techniques for learning from little or no labeled data. In this work, we explore the application of the Context Encoder paradigm for transfer learning in the domain of retinal image analysis. To this aim, we propose several approaches that allow to work with full resolution images and improve the recognition of the retinal structures. In order to validate the proposals, the Context Encoder pre-trained models are fine-tuned to perform two relevant tasks in the domain: vessels segmentation and fovea localization. The experiments performed on different public datasets demonstrate that the proposed Context Encoder approaches allow mitigating the impact of data scarcity, being superior to previous alternatives in this domain.
dc.languageeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.meshImage Processing, Computer-Assisted*
dc.subject.meshNeural Networks, Computer*
dc.subject.meshDiagnostic Imaging *
dc.subject.meshRetina *
dc.subject.meshMachine Learning *
dc.titleContext encoder transfer learning approaches for retinal image analysis
dc.typeArtigo
dc.authorsophosMorís, D.I.; Hervella, Á.S.; Rouco, J.; Novo, J.; Ortega, M.
dc.identifier.doi10.1016/j.compbiomed.2022.106451
dc.identifier.sophos63b996dd4386723d2da3786d
dc.journal.titleComputers in Biology and Medicine*
dc.organizationInstituto de Investigación Biomédica de A Coruña (INIBIC)
dc.organizationInstituto de Investigación Biomédica de A Coruña (INIBIC)
dc.organizationServizo Galego de Saúde::Áreas Sanitarias (A.S.) - Instituto de Investigación Biomédica de A Coruña (INIBIC)
dc.organizationInstituto de Investigación Biomédica de A Coruña (INIBIC)
dc.organizationInstituto de Investigación Biomédica de A Coruña (INIBIC)
dc.relation.publisherversionhttps://doi.org/10.1016/j.compbiomed.2022.106451
dc.rights.accessRightsopenAccess*
dc.subject.keywordINIBIC
dc.subject.keywordINIBIC
dc.subject.keywordAS A Coruña
dc.subject.keywordINIBIC
dc.subject.keywordINIBIC
dc.subject.keywordINIBIC
dc.typefidesArtículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis)
dc.typesophosArtículo Original
dc.volume.number152


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International