Mostrar el registro sencillo del ítem

dc.contributor.authorPorto-Álvarez, J.*
dc.contributor.authorCernadas, E.*
dc.contributor.authorAldaz Martínez, R.*
dc.contributor.authorFernández-Delgado, M.*
dc.contributor.authorHuelga Zapico, E.*
dc.contributor.authorGonzález-Castro, V.*
dc.contributor.authorBaleato Gonzalez, Sandra *
dc.contributor.authorGarcía Figueiras, Roberto *
dc.contributor.authorAntúnez López, José Ramón *
dc.contributor.authorSouto-Bayarri, M.*
dc.date.accessioned2025-09-08T12:23:02Z
dc.date.available2025-09-08T12:23:02Z
dc.date.issued2023
dc.identifier.citationPorto-Álvarez J, Cernadas E, Aldaz Martínez R, Fernández-Delgado M, Huelga Zapico E, González-Castro V, et al. CT-Based Radiomics to Predict KRAS Mutation in CRC Patients Using a Machine Learning Algorithm: A Retrospective Study. Biomedicines. 2023;11(8).
dc.identifier.issn2227-9059
dc.identifier.otherhttps://portalcientifico.sergas.gal//documentos/64f6356966ccc641d10d6d19
dc.identifier.urihttp://hdl.handle.net/20.500.11940/21297
dc.description.abstractColorectal cancer (CRC) is one of the most common types of cancer worldwide. The KRAS mutation is present in 30-50% of CRC patients. This mutation confers resistance to treatment with anti-EGFR therapy. This article aims at proving that computer tomography (CT)-based radiomics can predict the KRAS mutation in CRC patients. The piece is a retrospective study with 56 CRC patients from the Hospital of Santiago de Compostela, Spain. All patients had a confirmatory pathological analysis of the KRAS status. Radiomics features were obtained using an abdominal contrast enhancement CT (CECT) before applying any treatments. We used several classifiers, including AdaBoost, neural network, decision tree, support vector machine, and random forest, to predict the presence or absence of KRAS mutation. The most reliable prediction was achieved using the AdaBoost ensemble on clinical patient data, with a kappa and accuracy of 53.7% and 76.8%, respectively. The sensitivity and specificity were 73.3% and 80.8%. Using texture descriptors, the best accuracy and kappa were 73.2% and 46%, respectively, with sensitivity and specificity of 76.7% and 69.2%, also showing a correlation between texture patterns on CT images and KRAS mutation. Radiomics could help manage CRC patients, and in the future, it could have a crucial role in diagnosing CRC patients ahead of invasive methods.
dc.description.sponsorshipThis work received financial support from Xunta de Galicia (ED431G-2019/04) and the European Regional Development Fund (ERDF), which acknowledges the CiTIUS-Centro Singular de Investigacion en Tecnoloxias Intelixentes da Universidade de Santiago de Compostela as a Research Center of the Galician University System.
dc.languageeng
dc.rightsAttribution 4.0 International (CC BY 4.0)*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleCT-Based Radiomics to Predict KRAS Mutation in CRC Patients Using a Machine Learning Algorithm: A Retrospective Study
dc.typeArtigo
dc.authorsophosPorto-Álvarez, J.; Cernadas, E.; Aldaz Martínez, R.; Fernández-Delgado, M.; Huelga Zapico, E.; González-Castro, V.; Baleato-González, S.; García-Figueiras, R.; Antúnez-López, J.R.; Souto-Bayarri, M.
dc.identifier.doi10.3390/biomedicines11082144
dc.identifier.sophos64f6356966ccc641d10d6d19
dc.issue.number8
dc.journal.titleBiomedicines*
dc.organizationServizo Galego de Saúde::Áreas Sanitarias (A.S.) - Complexo Hospitalario Universitario de Santiago::Radiodiagnóstico
dc.organizationServizo Galego de Saúde::Áreas Sanitarias (A.S.) - Complexo Hospitalario Universitario de Santiago::Radiodiagnóstico
dc.organizationServizo Galego de Saúde::Áreas Sanitarias (A.S.) - Complexo Hospitalario Universitario de Santiago::Anatomía patolóxia
dc.relation.projectIDXunta de Galicia [ED431G-2019/04]
dc.relation.projectIDEuropean Regional Development Fund (ERDF)
dc.relation.publisherversionhttps://doi.org/10.3390/biomedicines11082144
dc.rights.accessRightsopenAccess*
dc.subject.keywordAS Santiago
dc.subject.keywordCHUS
dc.subject.keywordAS Santiago
dc.subject.keywordCHUS
dc.subject.keywordAS Santiago
dc.subject.keywordCHUS
dc.typefidesArtículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis)
dc.typesophosArtículo Original
dc.volume.number11


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution 4.0 International (CC BY 4.0)
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International (CC BY 4.0)