Mostrar el registro sencillo del ítem
CT-Based Radiomics to Predict KRAS Mutation in CRC Patients Using a Machine Learning Algorithm: A Retrospective Study
dc.contributor.author | Porto-Álvarez, J. | * |
dc.contributor.author | Cernadas, E. | * |
dc.contributor.author | Aldaz Martínez, R. | * |
dc.contributor.author | Fernández-Delgado, M. | * |
dc.contributor.author | Huelga Zapico, E. | * |
dc.contributor.author | González-Castro, V. | * |
dc.contributor.author | Baleato Gonzalez, Sandra | * |
dc.contributor.author | García Figueiras, Roberto | * |
dc.contributor.author | Antúnez López, José Ramón | * |
dc.contributor.author | Souto-Bayarri, M. | * |
dc.date.accessioned | 2025-09-08T12:23:02Z | |
dc.date.available | 2025-09-08T12:23:02Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Porto-Álvarez J, Cernadas E, Aldaz Martínez R, Fernández-Delgado M, Huelga Zapico E, González-Castro V, et al. CT-Based Radiomics to Predict KRAS Mutation in CRC Patients Using a Machine Learning Algorithm: A Retrospective Study. Biomedicines. 2023;11(8). | |
dc.identifier.issn | 2227-9059 | |
dc.identifier.other | https://portalcientifico.sergas.gal//documentos/64f6356966ccc641d10d6d19 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11940/21297 | |
dc.description.abstract | Colorectal cancer (CRC) is one of the most common types of cancer worldwide. The KRAS mutation is present in 30-50% of CRC patients. This mutation confers resistance to treatment with anti-EGFR therapy. This article aims at proving that computer tomography (CT)-based radiomics can predict the KRAS mutation in CRC patients. The piece is a retrospective study with 56 CRC patients from the Hospital of Santiago de Compostela, Spain. All patients had a confirmatory pathological analysis of the KRAS status. Radiomics features were obtained using an abdominal contrast enhancement CT (CECT) before applying any treatments. We used several classifiers, including AdaBoost, neural network, decision tree, support vector machine, and random forest, to predict the presence or absence of KRAS mutation. The most reliable prediction was achieved using the AdaBoost ensemble on clinical patient data, with a kappa and accuracy of 53.7% and 76.8%, respectively. The sensitivity and specificity were 73.3% and 80.8%. Using texture descriptors, the best accuracy and kappa were 73.2% and 46%, respectively, with sensitivity and specificity of 76.7% and 69.2%, also showing a correlation between texture patterns on CT images and KRAS mutation. Radiomics could help manage CRC patients, and in the future, it could have a crucial role in diagnosing CRC patients ahead of invasive methods. | |
dc.description.sponsorship | This work received financial support from Xunta de Galicia (ED431G-2019/04) and the European Regional Development Fund (ERDF), which acknowledges the CiTIUS-Centro Singular de Investigacion en Tecnoloxias Intelixentes da Universidade de Santiago de Compostela as a Research Center of the Galician University System. | |
dc.language | eng | |
dc.rights | Attribution 4.0 International (CC BY 4.0) | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | CT-Based Radiomics to Predict KRAS Mutation in CRC Patients Using a Machine Learning Algorithm: A Retrospective Study | |
dc.type | Artigo | |
dc.authorsophos | Porto-Álvarez, J.; Cernadas, E.; Aldaz Martínez, R.; Fernández-Delgado, M.; Huelga Zapico, E.; González-Castro, V.; Baleato-González, S.; García-Figueiras, R.; Antúnez-López, J.R.; Souto-Bayarri, M. | |
dc.identifier.doi | 10.3390/biomedicines11082144 | |
dc.identifier.sophos | 64f6356966ccc641d10d6d19 | |
dc.issue.number | 8 | |
dc.journal.title | Biomedicines | * |
dc.organization | Servizo Galego de Saúde::Áreas Sanitarias (A.S.) - Complexo Hospitalario Universitario de Santiago::Radiodiagnóstico | |
dc.organization | Servizo Galego de Saúde::Áreas Sanitarias (A.S.) - Complexo Hospitalario Universitario de Santiago::Radiodiagnóstico | |
dc.organization | Servizo Galego de Saúde::Áreas Sanitarias (A.S.) - Complexo Hospitalario Universitario de Santiago::Anatomía patolóxia | |
dc.relation.projectID | Xunta de Galicia [ED431G-2019/04] | |
dc.relation.projectID | European Regional Development Fund (ERDF) | |
dc.relation.publisherversion | https://doi.org/10.3390/biomedicines11082144 | |
dc.rights.accessRights | openAccess | * |
dc.subject.keyword | AS Santiago | |
dc.subject.keyword | CHUS | |
dc.subject.keyword | AS Santiago | |
dc.subject.keyword | CHUS | |
dc.subject.keyword | AS Santiago | |
dc.subject.keyword | CHUS | |
dc.typefides | Artículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis) | |
dc.typesophos | Artículo Original | |
dc.volume.number | 11 |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International (CC BY 4.0)
