Mostrar el registro sencillo del ítem

dc.contributor.authorColl, L.*
dc.contributor.authorPareto, D.*
dc.contributor.authorCarbonell-Mirabent, P.*
dc.contributor.authorCobo-Calvo, Á.*
dc.contributor.authorArrambide, G.*
dc.contributor.authorVidal-Jordana, Á.*
dc.contributor.authorComabella, M.*
dc.contributor.authorCastilló, J.*
dc.contributor.authorRodríguez-Acevedo, B.*
dc.contributor.authorZabalza, A.*
dc.contributor.authorGalán, I.*
dc.contributor.authorMidaglia ., Luciana Soledad*
dc.contributor.authorNos, C.*
dc.contributor.authorSalerno, A.*
dc.contributor.authorAuger, C.*
dc.contributor.authorAlberich, M.*
dc.contributor.authorRío, J.*
dc.contributor.authorSastre-Garriga, J.*
dc.contributor.authorOliver, A.*
dc.contributor.authorMontalban, X.*
dc.contributor.authorRovira, À.*
dc.contributor.authorTintoré, M.*
dc.contributor.authorLladó, X.*
dc.contributor.authorTur, C.*
dc.date.accessioned2025-09-08T12:23:47Z
dc.date.available2025-09-08T12:23:47Z
dc.date.issued2023
dc.identifier.citationColl L, Pareto D, Carbonell-Mirabent P, Cobo-Calvo Á, Arrambide G, Vidal-Jordana Á, et al. Deciphering multiple sclerosis disability with deep learning attention maps on clinical MRI. NeuroImage: Clinical. 2023;38.
dc.identifier.issn2213-1582
dc.identifier.otherhttps://portalcientifico.sergas.gal//documentos/642b36b5a1c8a315fd231ca5
dc.identifier.urihttp://hdl.handle.net/20.500.11940/21309
dc.description.abstractThe application of convolutional neural networks (CNNs) to MRI data has emerged as a promising approach to achieving unprecedented levels of accuracy when predicting the course of neurological conditions, including multiple sclerosis, by means of extracting image features not detectable through conventional methods. Additionally, the study of CNN-derived attention maps, which indicate the most relevant anatomical features for CNN-based decisions, has the potential to uncover key disease mechanisms leading to disability accumulation. From a cohort of patients prospectively followed up after a first demyelinating attack, we selected those with T1-weighted and T2-FLAIR brain MRI sequences available for image analysis and a clinical assessment performed within the following six months (N = 319). Patients were divided into two groups according to expanded disability status scale (EDSS) score: ?3.0 and < 3.0. A 3D-CNN model predicted the class using whole-brain MRI scans as input. A comparison with a logistic regression (LR) model using volumetric measurements as explanatory variables and a validation of the CNN model on an independent dataset with similar characteristics (N = 440) were also performed. The layer-wise relevance propagation method was used to obtain individual attention maps. The CNN model achieved a mean accuracy of 79% and proved to be superior to the equivalent LR-model (77%). Additionally, the model was successfully validated in the independent external cohort without any re-training (accuracy = 71%). Attention-map analyses revealed the predominant role of frontotemporal cortex and cerebellum for CNN decisions, suggesting that the mechanisms leading to disability accrual exceed the mere presence of brain lesions or atrophy and probably involve how damage is distributed in the central nervous system.
dc.description.sponsorshipMS PATHS is funded by Biogen. This study has been possible thanks to a Junior Leader La Caixa Fellowship awarded to C. Tur (fellowship code is LCF/BQ/PI20/11760008) by la Caixa Foundation (ID 100010434). The salaries of C. Tur and Ll. Coll are covered by this award.
dc.languageeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.meshHumans *
dc.subject.meshMultiple Sclerosis *
dc.subject.meshDeep Learning *
dc.subject.meshMagnetic Resonance Imaging *
dc.subject.meshBrain *
dc.subject.meshAttention *
dc.subject.meshBlindness *
dc.titleDeciphering multiple sclerosis disability with deep learning attention maps on clinical MRI
dc.typeArtigo
dc.authorsophosColl, L.; Pareto, D.; Carbonell-Mirabent, P.; Cobo-Calvo, Á.; Arrambide, G.; Vidal-Jordana, Á.; Comabella, M.; Castilló, J.; Rodríguez-Acevedo, B.; Zabalza, A.; Galán, I.; Midaglia, L.; Nos, C.; Salerno, A.; Auger, C.; Alberich, M.; Río, J.; Sastre-Garriga, J.; Oliver, A.; Montalban, X.; Rovira, À.; Tintoré, M.; Lladó, X.; Tur, C.
dc.identifier.doi10.1016/j.nicl.2023.103376
dc.identifier.sophos642b36b5a1c8a315fd231ca5
dc.journal.titleNeuroImage: Clinical*
dc.organizationServizo Galego de Saúde::Áreas Sanitarias (A.S.) - Complexo Hospitalario Universitario de Vigo::Neuroloxía
dc.relation.projectIDBiogen
dc.relation.projectIDla Caixa Foundation [LCF/BQ/PI20/11760008, 100010434]
dc.relation.publisherversionhttps://doi.org/10.1016/j.nicl.2023.103376
dc.rights.accessRightsopenAccess*
dc.subject.keywordAS Vigo
dc.subject.keywordCHUVI
dc.typefidesArtículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis)
dc.typesophosArtículo Original
dc.volume.number38


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International