Mostrar el registro sencillo del ítem
Deep learning models for real-life human activity recognition from smartphone sensor data
dc.contributor.author | Garcia-Gonzalez, D. | * |
dc.contributor.author | Rivero Cebrián, Daniel | * |
dc.contributor.author | Fernández Blanco, Enrique | * |
dc.contributor.author | Luaces, M.R. | * |
dc.date.accessioned | 2025-09-08T12:23:54Z | |
dc.date.available | 2025-09-08T12:23:54Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Garcia-Gonzalez D, Rivero D, Fernandez-Blanco E, Luaces MR. Deep learning models for real-life human activity recognition from smartphone sensor data. Internet of Things (Netherlands). 2023;24. | |
dc.identifier.issn | 2542-6605 | |
dc.identifier.other | https://portalcientifico.sergas.gal//documentos/651014e20058624993e2d58b | |
dc.identifier.uri | http://hdl.handle.net/20.500.11940/21312 | |
dc.description.abstract | Nowadays, the field of human activity recognition (HAR) is a remarkably hot topic within the scientific community. Given the low cost, ease of use and high accuracy of the sensors from different wearable devices and smartphones, more and more researchers are opting to do their bit in this area. However, until very recently, all the work carried out in this field was done in laboratory conditions, with very few similarities with our daily lives. This paper will focus on this new trend of integrating all the knowledge acquired so far into a real-life environment. Thus, a dataset already published following this philosophy was used. In this way, this work aims to be able to identify the different actions studied there. In order to perform this classification, this paper explores new designs and architectures for models inspired by the ones which have yielded the best results in the literature. More specifically, different configurations of Convolutional Neural Networks (CNN) and Long-Short Term Memory (LSTM) have been tested, but on real-life conditions instead of laboratory ones. It is worth mentioning that the hybrid models formed from these techniques yielded the best results, with a peak accuracy of 94.80% on the dataset used. | |
dc.description.sponsorship | This research was partially funded by MCIN/AEI/10.13039/501100011033, Next GenerationEU/PRTR, FLATCITY-POC, Spain [grant number PDC2021-121239-C31] ; MCIN/AEI/10.13039/501100011033 MAGIST, Spain [grant number PID2019-105221RB-C41] ; Xunta de Galicia/FEDER-UE, Spain [grant numbers ED431G 2019/01, ED481A 2020/003, ED431C 2022/46, ED431C 2018/49 and ED431C 2021/53] . Funidng for open access charge: Universidade da Coruna/CISUG. | |
dc.language | eng | |
dc.rights | Attribution 4.0 International (CC BY 4.0) | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | Deep learning models for real-life human activity recognition from smartphone sensor data | |
dc.type | Artigo | |
dc.authorsophos | Garcia-Gonzalez, D.; Rivero, D.; Fernandez-Blanco, E.; Luaces, M.R. | |
dc.identifier.doi | 10.1016/j.iot.2023.100925 | |
dc.identifier.sophos | 651014e20058624993e2d58b | |
dc.journal.title | Internet of Things (Netherlands) | * |
dc.organization | Instituto de Investigación Biomédica de A Coruña (INIBIC) | |
dc.organization | Instituto de Investigación Biomédica de A Coruña (INIBIC) | |
dc.relation.projectID | MCIN/AEI [ED481A 2020/003, ED431C 2022/46, ED431C 2018/49, ED431C 2021/53] | |
dc.relation.projectID | Next GenerationEU/PRTR | |
dc.relation.projectID | FLATCITY-POC, Spain [PDC2021-121239-C31] | |
dc.relation.projectID | MCIN/AEI, Spain [PID2019-105221RB-C41] | |
dc.relation.projectID | Xunta de Galicia/FEDER-UE, Spain [ED481A 2020/003, ED431C 2022/46, ED431C 2018/49, ED431C 2021/53, ED431G 2019/01] | |
dc.relation.projectID | Universidade da Coruna/CISUG | |
dc.relation.publisherversion | https://doi.org/10.1016/j.iot.2023.100925 | |
dc.rights.accessRights | openAccess | * |
dc.subject.keyword | INIBIC | |
dc.subject.keyword | INIBIC | |
dc.typefides | Artículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis) | |
dc.typesophos | Artículo Original | |
dc.volume.number | 24 |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International (CC BY 4.0)
