Mostrar el registro sencillo del ítem
Design of an Intelligent Decision Support System Applied to the Diagnosis of Obstructive Sleep Apnea
dc.contributor.author | Casal-Guisande, M. | * |
dc.contributor.author | Ceide-Sandoval, L. | * |
dc.contributor.author | Mosteiro Añon, Maria del Mar | * |
dc.contributor.author | Torres Durán, María Luisa | * |
dc.contributor.author | Cerqueiro-Pequeño, J. | * |
dc.contributor.author | Bouza-Rodríguez, J.-B. | * |
dc.contributor.author | Fernández Villar, José Alberto | * |
dc.contributor.author | Comesaña-Campos, A. | * |
dc.date.accessioned | 2025-09-08T12:24:23Z | |
dc.date.available | 2025-09-08T12:24:23Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Casal-Guisande M, Ceide-Sandoval L, Mosteiro-Añón M, Torres-Durán M, Cerqueiro-Pequeño J, Bouza-Rodríguez J-B, et al. Design of an Intelligent Decision Support System Applied to the Diagnosis of Obstructive Sleep Apnea. Diagnostics. 2023;13(11). | |
dc.identifier.issn | 2075-4418 | |
dc.identifier.other | https://portalcientifico.sergas.gal//documentos/64995ba371c692789f1e040d | |
dc.identifier.uri | http://hdl.handle.net/20.500.11940/21325 | |
dc.description.abstract | Obstructive sleep apnea (OSA), characterized by recurrent episodes of partial or total obstruction of the upper airway during sleep, is currently one of the respiratory pathologies with the highest incidence worldwide. This situation has led to an increase in the demand for medical appointments and specific diagnostic studies, resulting in long waiting lists, with all the health consequences that this entails for the affected patients. In this context, this paper proposes the design and development of a novel intelligent decision support system applied to the diagnosis of OSA, aiming to identify patients suspected of suffering from the pathology. For this purpose, two sets of heterogeneous information are considered. The first one includes objective data related to the patient's health profile, with information usually available in electronic health records (anthropometric information, habits, diagnosed conditions and prescribed treatments). The second type includes subjective data related to the specific OSA symptomatology reported by the patient in a specific interview. For the processing of this information, a machine-learning classification algorithm and a set of fuzzy expert systems arranged in cascade are used, obtaining, as a result, two indicators related to the risk of suffering from the disease. Subsequently, by interpreting both risk indicators, it will be possible to determine the severity of the patients' condition and to generate alerts. For the initial tests, a software artifact was built using a dataset with 4400 patients from the Álvaro Cunqueiro Hospital (Vigo, Galicia, Spain). The preliminary results obtained are promising and demonstrate the potential usefulness of this type of tool in the diagnosis of OSA. | |
dc.description.sponsorship | M.C.-G. is grateful to Conselleria de Educacion, Universidade e Formacion Profesional e Conselleria de Economia, Emprego e Industria da Xunta de Galicia (ED481A-2020/038)for his pre-doctoral fellowship. | |
dc.language | eng | |
dc.rights | Attribution 4.0 International (CC BY 4.0) | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | Design of an Intelligent Decision Support System Applied to the Diagnosis of Obstructive Sleep Apnea | |
dc.type | Artigo | |
dc.authorsophos | Casal-Guisande, M.; Ceide-Sandoval, L.; Mosteiro-Añón, M.; Torres-Durán, M.; Cerqueiro-Pequeño, J.; Bouza-Rodríguez, J.-B.; Fernández-Villar, A.; Comesaña-Campos, A. | |
dc.identifier.doi | 10.3390/diagnostics13111854 | |
dc.identifier.sophos | 64995ba371c692789f1e040d | |
dc.issue.number | 11 | |
dc.journal.title | Diagnostics | * |
dc.organization | Servizo Galego de Saúde::Áreas Sanitarias (A.S.) - Complexo Hospitalario Universitario de Vigo::Neumoloxía | |
dc.organization | Servizo Galego de Saúde::Áreas Sanitarias (A.S.) - Complexo Hospitalario Universitario de Vigo::Neumoloxía | |
dc.organization | Servizo Galego de Saúde::Áreas Sanitarias (A.S.) - Complexo Hospitalario Universitario de Vigo::Neumoloxía | |
dc.relation.projectID | Conselleria de Economia, Emprego e Industria da Xunta de Galicia [ED481A-2020/038] | |
dc.relation.projectID | Conselleria de Educacion, Universidade e Formacion Profesional | |
dc.relation.publisherversion | https://doi.org/10.3390/diagnostics13111854 | |
dc.rights.accessRights | openAccess | * |
dc.subject.keyword | AS Vigo | |
dc.subject.keyword | CHUVI | |
dc.subject.keyword | AS Vigo | |
dc.subject.keyword | CHUVI | |
dc.subject.keyword | AS Vigo | |
dc.subject.keyword | CHUVI | |
dc.typefides | Artículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis) | |
dc.typesophos | Artículo Original | |
dc.volume.number | 13 |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International (CC BY 4.0)
