Mostrar el registro sencillo del ítem
Enhancing Pathological Detection and Monitoring in OCT Volumes with Limited Slices using Convolutional Neural Networks and 3D Visualization Techniques
dc.contributor.author | López Varela, Emilio | * |
dc.contributor.author | Barreira Rodríguez, Noelia | * |
dc.contributor.author | Olivier Pascual, Nuria | * |
dc.contributor.author | González Penedo, Manuel | * |
dc.date.accessioned | 2025-09-09T10:20:18Z | |
dc.date.available | 2025-09-09T10:20:18Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | López Varela E, Barreira N, Olivier Pascual N, González Penedo MF. Enhancing Pathological Detection and Monitoring in OCT Volumes with Limited Slices using Convolutional Neural Networks and 3D Visualization Techniques. En: VI Congreso XoveTIC: impulsando el talento científico. A Coruña: Servizo de Publicacións; 2023. | |
dc.identifier.other | https://portalcientifico.sergas.gal//documentos/6633d96bc549a8241924fe76 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11940/21343 | |
dc.description.abstract | Optical Coherence Tomography (OCT) is a non-invasive imaging technique with a crucial role in the monitoring of a wide range of diseases. In order to make a good diagnosis it is essential that clinicians can observe any subtle changes that appear in the multiple ocular structures, so it is imperative that the 3D OCT volumes have good resolution in each axis. Unfortunately, there is a trade-off between image quality and the number of volume slices. In this work, we use a convolutional neural network to generate the intermediate synthetic slices of the OTC volumes and we propose a few variants of a 3D reconstruction algorithm to create visualizations that emphasize the changes present in multiple retinal structures to aid clinicians in the diagnostic process | |
dc.language | eng | |
dc.rights | Attribution 4.0 International (CC BY 4.0) | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | Enhancing Pathological Detection and Monitoring in OCT Volumes with Limited Slices using Convolutional Neural Networks and 3D Visualization Techniques | |
dc.type | Publicación de congreso | |
dc.authorsophos | Emilio López Varela; Noelia Barreira; Nuria Olivier Pascual; Manuel G. Penedo | |
dc.identifier.doi | 10.17979/spudc.000024.23 | |
dc.identifier.sophos | 6633d96bc549a8241924fe76 | |
dc.organization | Instituto de Investigación Biomédica de A Coruña (INIBIC) | |
dc.organization | Instituto de Investigación Biomédica de A Coruña (INIBIC) | |
dc.organization | Servizo Galego de Saúde::Áreas Sanitarias (A.S.) - Complexo Hospitalario Universitario de Ferrol::Oftalmoloxía | |
dc.organization | Servizo Galego de Saúde::Áreas Sanitarias (A.S.) - Instituto de Investigación Biomédica de A Coruña (INIBIC)::Informática, sistemas e tecnoloxías da información | |
dc.relation.publisherversion | https://doi.org/10.17979/spudc.000024.23 | |
dc.rights.accessRights | openAccess | * |
dc.subject.keyword | INIBIC | |
dc.subject.keyword | INIBIC | |
dc.subject.keyword | AS Ferrol | |
dc.subject.keyword | CHUF | |
dc.subject.keyword | AS A Coruña | |
dc.subject.keyword | INIBIC | |
dc.typefides | Comunicación a Congreso | |
dc.typesophos | Comunicación a Congreso |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International (CC BY 4.0)
