Mostrar o rexistro simple do ítem
Forecasting emergency department arrivals using INGARCH models
dc.contributor.author | Reboredo, J.C. | * |
dc.contributor.author | Barba-Queiruga, J.R. | * |
dc.contributor.author | Ojea-Ferreiro, J. | * |
dc.contributor.author | Reyes Santías, Francisco | * |
dc.date.accessioned | 2025-09-09T11:23:20Z | |
dc.date.available | 2025-09-09T11:23:20Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Reboredo JC, Barba-Queiruga JR, Ojea-Ferreiro J, Reyes-Santias F. Forecasting emergency department arrivals using INGARCH models. Health Economics Review. 2023;13(1). | |
dc.identifier.issn | 2191-1991 | |
dc.identifier.other | https://portalcientifico.sergas.gal//documentos/6550da0392517a5a7db94df1 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11940/21511 | |
dc.description.abstract | Background: Forecasting patient arrivals to hospital emergency departments is critical to dealing with surges and to efficient planning, management and functioning of hospital emerency departments. Objective: We explore whether past mean values and past observations are useful to forecast daily patient arrivals in an Emergency Department. Material and methods: We examine whether an integer-valued generalized autoregressive conditional heteroscedastic (INGARCH) model can yield a better conditional distribution fit and forecast of patient arrivals by using past arrival information and taking into account the dynamics of the volatility of arrivals. Results: We document that INGARCH models improve both in-sample and out-of-sample forecasts, particularly in the lower and upper quantiles of the distribution of arrivals. Conclusion: Our results suggest that INGARCH modelling is a useful model for short-term and tactical emergency department planning, e.g., to assign rotas or locate staff for unexpected surges in patient arrivals. | |
dc.description.sponsorship | Ministerio de Ciencia, Innovacion y Universidades) under research project with reference PID2021-124336OB-I00 co-funded by the European Regional Development Fund (ERDF/FEDER). | |
dc.language | eng | |
dc.rights | Attribution 4.0 International (CC BY 4.0) | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | Forecasting emergency department arrivals using INGARCH models | |
dc.type | Artigo | |
dc.authorsophos | Reboredo, J.C.; Barba-Queiruga, J.R.; Ojea-Ferreiro, J.; Reyes-Santias, F. | |
dc.identifier.doi | 10.1186/s13561-023-00456-5 | |
dc.identifier.sophos | 6550da0392517a5a7db94df1 | |
dc.issue.number | 1 | |
dc.journal.title | Health Economics Review | * |
dc.organization | Servizo Galego de Saúde::Áreas Sanitarias (A.S.) - Complexo Hospitalario Universitario de Santiago::Xestión sanitaria e dirección | |
dc.relation.projectID | Ministerio de Ciencia, Innovacion y Universidades [PID2021-124336OB-I00] | |
dc.relation.projectID | European Regional Development Fund (ERDF/FEDER) | |
dc.relation.publisherversion | https://doi.org/10.1186/s13561-023-00456-5 | |
dc.rights.accessRights | openAccess | * |
dc.subject.keyword | AS Santiago | |
dc.subject.keyword | CHUS | |
dc.typefides | Artículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis) | |
dc.typesophos | Artículo Original | |
dc.volume.number | 13 |
Ficheiros no ítem
Este ítem aparece na(s) seguinte(s) colección(s)
A non ser que se indique outra cousa, a licenza do ítem descríbese comoAttribution 4.0 International (CC BY 4.0)
