Mostrar o rexistro simple do ítem
Generation of synthetic intermediate slices in 3D OCT cubes for improving pathology detection and monitoring
dc.contributor.author | López Varela, Emilio | * |
dc.contributor.author | Barreira Rodríguez, Noelia | * |
dc.contributor.author | Olivier Pascual, Nuria | * |
dc.contributor.author | Arroyo Castillo, Rosa | * |
dc.contributor.author | González Penedo, Manuel | * |
dc.date.accessioned | 2025-09-09T11:24:14Z | |
dc.date.available | 2025-09-09T11:24:14Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | López-Varela E, Barreira N, Pascual NO, Castillo MRA, Penedo MG. Generation of synthetic intermediate slices in 3D OCT cubes for improving pathology detection and monitoring. Computers in Biology and Medicine. 2023;163. | |
dc.identifier.issn | 1879-0534 | |
dc.identifier.other | https://portalcientifico.sergas.gal//documentos/64c85ce6acdc40244331e92b | |
dc.identifier.uri | http://hdl.handle.net/20.500.11940/21526 | |
dc.description.abstract | OCT is a non-invasive imaging technique commonly used to obtain 3D volumes of the ocular structure. These volumes allow the monitoring of ocular and systemic diseases through the observation of subtle changes in the different structures present in the eye. In order to observe these changes it is essential that the OCT volumes have a high resolution in all axes, but unfortunately there is an inverse relationship between the quality of the OCT images and the number of slices of the cube. This results in routine clinical examinations using cubes that generally contain high-resolution images with few slices. This lack of slices complicates the monitoring of changes in the retina hindering the diagnostic process and reducing the effectiveness of 3D visualizations. Therefore, increasing the cross-sectional resolution of OCT cubes would improve the visualization of these changes aiding the clinician in the diagnostic process. In this work we present a novel fully automatic methodology to perform the synthesis of intermediate slices of OCT image volumes in an unsupervised manner. To perform this synthesis, we propose a fully convolutional neural network architecture that uses information from two adjacent slices to generate the intermediate synthetic slice. We also propose a training methodology, where we use three adjacent slices to train the network by contrastive learning and image reconstruction. We test our methodology with three different types of OCT volumes commonly used in the clinical setting and validate the quality of the synthetic slices created with several medical experts and using an expert system. | |
dc.description.sponsorship | This research was funded by Instituto de Salud Carlos III, Government of Spain, DTS18/00136 research project; Ministerio de Ciencia e Innovacion y Universidades, Government of Spain, RTI2018-095894-B-I00 research project; Ministerio de Ciencia e Innovacion, Government of Spain through the research project with reference PID2019-108435RB-I00; Conselleria de Cultura, Educacion e Universidade, Xunta de Galicia through the postdoctoral, grant ref. ED481B-2021-059; and Grupos de Referencia Competitiva, grant ref. ED431C 2020/24; Axencia Galega de Innovacion (GAIN) , Xunta de Galicia, grant ref. IN845D 2020/38; CITIC, as Research Center accredited by Galician University System, is funded by Conselleria de Cultura, Educacion e Universidade from Xunta de Galicia, supported in an 80% through ERDF Funds, ERDF Operational Programme Galicia 2014-2020, and the remaining 20% by Secretaria Xeral de Universidades, grant ref. ED431G 2019/01. Emilio Lopez Varela acknowledges its support under FPI Grant Program through PID2019-108435RB-I00 project. Funding for open access charge: Universidade da Coruna/CISUG. | |
dc.language | eng | |
dc.rights | Attribution 4.0 International (CC BY 4.0) | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject.mesh | Cross-Sectional Studies | * |
dc.subject.mesh | Tomography, Optical Coherence | * |
dc.subject.mesh | Retina | * |
dc.subject.mesh | Image Processing, Computer-Assisted | * |
dc.subject.mesh | Neural Networks, Computer | * |
dc.title | Generation of synthetic intermediate slices in 3D OCT cubes for improving pathology detection and monitoring | |
dc.type | Artigo | |
dc.authorsophos | López-Varela, E.; Barreira, N.; Pascual, N.O.; Castillo, M.R.A.; Penedo, M.G. | |
dc.identifier.doi | 10.1016/j.compbiomed.2023.107214 | |
dc.identifier.sophos | 64c85ce6acdc40244331e92b | |
dc.journal.title | Computers in Biology and Medicine | * |
dc.organization | Instituto de Investigación Biomédica de A Coruña (INIBIC) | |
dc.organization | Instituto de Investigación Biomédica de A Coruña (INIBIC) | |
dc.organization | Servizo Galego de Saúde::Áreas Sanitarias (A.S.) - Complexo Hospitalario Universitario de Ferrol::Oftalmoloxía | |
dc.organization | Servizo Galego de Saúde::Áreas Sanitarias (A.S.) - Complexo Hospitalario Universitario de Ferrol::Oftalmoloxía | |
dc.organization | Servizo Galego de Saúde::Áreas Sanitarias (A.S.) - Instituto de Investigación Biomédica de A Coruña (INIBIC)::Informática, sistemas e tecnoloxías da información | |
dc.relation.projectID | Instituto de Salud Carlos III, Govern-ment of Spain [DTS18/00136] | |
dc.relation.projectID | Instituto de Salud Carlos III, Government of Spain [DTS18/00136] | |
dc.relation.projectID | Ministerio de Ciencia e Innovacion y Universidades, Government of Spain [RTI2018-095894-B-I00] | |
dc.relation.projectID | Ministerio de Ciencia e Innovacion, Government of Spain [PID2019-108435RB-I00] | |
dc.relation.projectID | Conselleria de Cultura, Educacion e Universidade, Xunta de Galicia [ED481B-2021-059] | |
dc.relation.projectID | Grupos de Referencia Competitiva [ED431C 2020/24] | |
dc.relation.projectID | Axencia Galega de Innovacion (GAIN) , Xunta de Galicia [IN845D 2020/38] | |
dc.relation.projectID | CITIC | |
dc.relation.projectID | Conselleria de Cultura, Educacion e Universidade from Xunta de Galicia | |
dc.relation.projectID | ERDF Funds | |
dc.relation.projectID | Secretaria Xeral de Universidades [ED431G 2019/01] | |
dc.relation.projectID | FPI | |
dc.relation.projectID | Universidade da Coruna/CISUG | |
dc.relation.publisherversion | https://doi.org/10.1016/j.compbiomed.2023.107214 | |
dc.rights.accessRights | openAccess | * |
dc.subject.keyword | INIBIC | |
dc.subject.keyword | INIBIC | |
dc.subject.keyword | AS Ferrol | |
dc.subject.keyword | CHUF | |
dc.subject.keyword | AS Ferrol | |
dc.subject.keyword | CHUF | |
dc.subject.keyword | AS A Coruña | |
dc.subject.keyword | INIBIC | |
dc.typefides | Artículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis) | |
dc.typesophos | Artículo Original | |
dc.volume.number | 163 |
Ficheiros no ítem
Este ítem aparece na(s) seguinte(s) colección(s)
A non ser que se indique outra cousa, a licenza do ítem descríbese comoAttribution 4.0 International (CC BY 4.0)
