Mostrar el registro sencillo del ítem

dc.contributor.authorManiaci, A.*
dc.contributor.authorRiela, P.M.*
dc.contributor.authorIannella, G.*
dc.contributor.authorLechien, J.R.*
dc.contributor.authorLa Mantia, I.*
dc.contributor.authorDe Vincentiis, M.*
dc.contributor.authorCammaroto, G.*
dc.contributor.authorCalvo Henríquez, Christian Ezequiel*
dc.contributor.authorDi Luca, M.*
dc.contributor.authorChiesa Estomba, Carlos Miguel *
dc.contributor.authorSaibene, A.M.*
dc.contributor.authorPollicina, I.*
dc.contributor.authorStilo, G.*
dc.contributor.authorDi Mauro, P.*
dc.contributor.authorCannavicci, A.*
dc.contributor.authorLugo, R.*
dc.contributor.authorMagliulo, G.*
dc.contributor.authorGreco, A.*
dc.contributor.authorPace, A.*
dc.contributor.authorMeccariello, G.*
dc.contributor.authorCocuzza, S.*
dc.contributor.authorVicini, C.*
dc.date.accessioned2025-09-10T08:40:12Z
dc.date.available2025-09-10T08:40:12Z
dc.date.issued2023
dc.identifier.citationManiaci A, Riela PM, Iannella G, Lechien JR, La Mantia I, De Vincentiis M, et al. Machine Learning Identification of Obstructive Sleep Apnea Severity through the Patient Clinical Features: A Retrospective Study. Life. 2023;13(3).
dc.identifier.issn2075-1729
dc.identifier.otherhttps://portalcientifico.sergas.gal//documentos/6444ee3d48c3090deaa26a7f
dc.identifier.urihttp://hdl.handle.net/20.500.11940/21698
dc.description.abstractObjectives: To evaluate the role of clinical scores assessing the risk of disease severity in patients with clinical suspicion of obstructive sleep apnea syndrome (OSA). The hypothesis was tested by applying artificial intelligence (AI) to demonstrate its effectiveness in distinguishing between mild-moderate OSA and severe OSA risk. Methods: A support vector machine model (SVM) was developed from the samples included in the analysis (N = 498), and they were split into 75% for training (N = 373) with the remaining for testing (N = 125). Two diagnostic thresholds were selected for OSA severity: mild to moderate (apnea-hypopnea index (AHI) ? 5 events/h and AHI < 30 events/h) and severe (AHI ? 30 events/h). The algorithms were trained and tested to predict OSA patient severity. Results: The sensitivity and specificity for the SVM model were 0.93 and 0.80 with an accuracy of 0.86; instead, the logistic regression full mode reported a value of 0.74 and 0.63, respectively, with an accuracy of 0.68. After backward stepwise elimination for features selection, the reduced logistic regression model demonstrated a sensitivity and specificity of 0.79 and 0.56, respectively, and an accuracy of 0.67. Conclusion: Artificial intelligence could be applied to patients with symptoms related to OSA to identify individuals with a severe OSA risk with clinical-based algorithms in the OSA framework.
dc.languageeng
dc.rightsAttribution 4.0 International (CC BY 4.0)*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleMachine Learning Identification of Obstructive Sleep Apnea Severity through the Patient Clinical Features: A Retrospective Study
dc.typeArtigo
dc.authorsophosManiaci, A.; Riela, P.M.; Iannella, G.; Lechien, J.R.; La Mantia, I.; De Vincentiis, M.; Cammaroto, G.; Calvo-Henriquez, C.; Di Luca, M.; Chiesa Estomba, C.; Saibene, A.M.; Pollicina, I.; Stilo, G.; Di Mauro, P.; Cannavicci, A.; Lugo, R.; Magliulo, G.; Greco, A.; Pace, A.; Meccariello, G.; Cocuzza, S.; Vicini, C.
dc.identifier.doi10.3390/life13030702
dc.identifier.sophos6444ee3d48c3090deaa26a7f
dc.issue.number3
dc.journal.titleLife*
dc.organizationServizo Galego de Saúde::Áreas Sanitarias (A.S.) - Complexo Hospitalario Universitario de Santiago::Otorrinolaringoloxía
dc.organizationServizo Galego de Saúde::Áreas Sanitarias (A.S.) - Complexo Hospitalario Universitario de Vigo::Otorrinolaringoloxía
dc.relation.publisherversionhttps://doi.org/10.3390/life13030702
dc.rights.accessRightsopenAccess*
dc.subject.keywordAS Santiago
dc.subject.keywordCHUS
dc.subject.keywordAS Vigo
dc.subject.keywordCHUVI
dc.typefidesArtículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis)
dc.typesophosArtículo Original
dc.volume.number13


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution 4.0 International (CC BY 4.0)
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International (CC BY 4.0)