Mostrar o rexistro simple do ítem

dc.contributor.authorMosquera Orgueira, Adrián*
dc.contributor.authorPérez Encinas, Manuel Mateo*
dc.contributor.authorHernández-Sánchez, A.*
dc.contributor.authorGonzález Martínez, María Teresa*
dc.contributor.authorArellano-Rodrigo, E.*
dc.contributor.authorMartínez-Elicegui, J.*
dc.contributor.authorVillaverde-Ramiro, Á.*
dc.contributor.authorRaya, J.-M.*
dc.contributor.authorAyala, R.*
dc.contributor.authorFerrer-Marín, F.*
dc.contributor.authorFox, M.-L.*
dc.contributor.authorVelez, P.*
dc.contributor.authorMora, E.*
dc.contributor.authorXicoy, B.*
dc.contributor.authorMata-Vázquez, M.-I.*
dc.contributor.authorGarcía-Fortes, M.*
dc.contributor.authorAngona, A.*
dc.contributor.authorCuevas, B.*
dc.contributor.authorSenín, M.-A.*
dc.contributor.authorRamírez-Payer, A.*
dc.contributor.authorRamírez, M.-J.*
dc.contributor.authorPérez-López, R.*
dc.contributor.authorGonzález De Villambrosía, S.*
dc.contributor.authorMartínez-Valverde, C.*
dc.contributor.authorGómez-Casares, M.-T.*
dc.contributor.authorGarcía-Hernández, C.*
dc.contributor.authorGasior, M.*
dc.contributor.authorBellosillo, B.*
dc.contributor.authorSteegmann, J.-L.*
dc.contributor.authorÁlvarez-Larrán, A.*
dc.contributor.authorHernández-Rivas, J.M.*
dc.contributor.authorHernández-Boluda, J.C.*
dc.date.accessioned2025-09-10T08:40:25Z
dc.date.available2025-09-10T08:40:25Z
dc.date.issued2023
dc.identifier.citationMosquera-Orgueira A, Pérez-Encinas M, Hernández-Sánchez A, González-Martínez T, Arellano-Rodrigo E, Martínez-Elicegui J, et al. Machine Learning Improves Risk Stratification in Myelofibrosis: An Analysis of the Spanish Registry of Myelofibrosis. HemaSphere. 2023;7(1):E818.
dc.identifier.issn2572-9241
dc.identifier.otherhttps://portalcientifico.sergas.gal//documentos/63b996fa4386723d2da37c73
dc.identifier.urihttp://hdl.handle.net/20.500.11940/21700
dc.description.abstractMyelofibrosis (MF) is a myeloproliferative neoplasm (MPN) with heterogeneous clinical course. Allogeneic hematopoietic cell transplantation remains the only curative therapy, but its morbidity and mortality require careful candidate selection. Therefore, accurate disease risk prognostication is critical for treatment decision-making. We obtained registry data from patients diagnosed with MF in 60 Spanish institutions (N = 1386). These were randomly divided into a training set (80%) and a test set (20%). A machine learning (ML) technique (random forest) was used to model overall survival (OS) and leukemia-free survival (LFS) in the training set, and the results were validated in the test set. We derived the AIPSS-MF (Artificial Intelligence Prognostic Scoring System for Myelofibrosis) model, which was based on 8 clinical variables at diagnosis and achieved high accuracy in predicting OS (training set c-index, 0.750; test set c-index, 0.744) and LFS (training set c-index, 0.697; test set c-index, 0.703). No improvement was obtained with the inclusion of MPN driver mutations in the model. We were unable to adequately assess the potential benefit of including adverse cytogenetics or high-risk mutations due to the lack of these data in many patients. AIPSS-MF was superior to the IPSS regardless of MF subtype and age range and outperformed the MYSEC-PM in patients with secondary MF. In conclusion, we have developed a prediction model based exclusively on clinical variables that provides individualized prognostic estimates in patients with primary and secondary MF. The use of AIPSS-MF in combination with predictive models that incorporate genetic information may improve disease risk stratification.
dc.description.sponsorshipThe Spanish Registry of Myelofibrosis was initially sponsored by a grant from Novartis Pharmaceuticals, Inc. The data supporting the findings of this study are not publicly available due to privacy or ethical restrictions but are available on request from the corresponding authors. The study was approved by the scientific board of GEMFIN. The authors have no conflicts of interest to disclose.
dc.languageeng
dc.rightsAttribution 4.0 International (CC BY 4.0)*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleMachine Learning Improves Risk Stratification in Myelofibrosis: An Analysis of the Spanish Registry of Myelofibrosis
dc.typeArtigo
dc.authorsophosMosquera-Orgueira, A.; Pérez-Encinas, M.; Hernández-Sánchez, A.; González-Martínez, T.; Arellano-Rodrigo, E.; Martínez-Elicegui, J.; Villaverde-Ramiro, Á.; Raya, J.-M.; Ayala, R.; Ferrer-Marín, F.; Fox, M.-L.; Velez, P.; Mora, E.; Xicoy, B.; Mata-Vázquez, M.-I.; García-Fortes, M.; Angona, A.; Cuevas, B.; Senín, M.-A.; Ramírez-Payer, A.; Ramírez, M.-J.; Pérez-López, R.; González De Villambrosía, S.; Martínez-Valverde, C.; Gómez-Casares, M.-T.; García-Hernández, C.; Gasior, M.; Bellosillo, B.; Steegmann, J.-L.; Álvarez-Larrán, A.; Hernández-Rivas, J.M.; Hernández-Boluda, J.C.
dc.identifier.doi10.1097/hs9.0000000000000818
dc.identifier.sophos63b996fa4386723d2da37c73
dc.issue.number1
dc.journal.titleHemaSphere*
dc.organizationServizo Galego de Saúde::Áreas Sanitarias (A.S.) - Complexo Hospitalario Universitario de Santiago::Hematoloxía
dc.organizationServizo Galego de Saúde::Áreas Sanitarias (A.S.) - Complexo Hospitalario Universitario de Santiago::Hematoloxía
dc.organizationFundación Pública Galega de Medicina Xenómica
dc.page.initialE818
dc.relation.projectIDNovartis Pharmaceuticals, Inc.
dc.relation.publisherversionhttps://doi.org/10.1097/hs9.0000000000000818
dc.rights.accessRightsopenAccess*
dc.subject.keywordAS Santiago
dc.subject.keywordCHUS
dc.subject.keywordAS Santiago
dc.subject.keywordCHUS
dc.subject.keywordFPGMX
dc.typefidesArtículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis)
dc.typesophosArtículo Original
dc.volume.number7


Ficheiros no ítem

Este ítem aparece na(s) seguinte(s) colección(s)

Mostrar o rexistro simple do ítem

Attribution 4.0 International (CC BY 4.0)
A non ser que se indique outra cousa, a licenza do ítem descríbese comoAttribution 4.0 International (CC BY 4.0)