Mostrar el registro sencillo del ítem

dc.contributor.authorJansen, M.P.*
dc.contributor.authorWirth, W.*
dc.contributor.authorBacardit, J.*
dc.contributor.authorvan Helvoort, E.M.*
dc.contributor.authorMarijnissen, A.C.A.*
dc.contributor.authorKloppenburg, M.*
dc.contributor.authorBlanco García, Francisco*
dc.contributor.authorHaugen, I.K.*
dc.contributor.authorBerenbaum, F.*
dc.contributor.authorLadel, C.H.*
dc.contributor.authorLoef, M.*
dc.contributor.authorLafeber, F.P.J.G.*
dc.contributor.authorWelsing, P.M.*
dc.contributor.authorMastbergen, S.C.*
dc.contributor.authorRoemer, F.W.*
dc.date.accessioned2025-09-10T08:41:20Z
dc.date.available2025-09-10T08:41:20Z
dc.date.issued2023
dc.identifier.citationJansen MP, Wirth W, Bacardit J, van Helvoort EM, Marijnissen ACA, Kloppenburg M, et al. Machine-learning predicted and actual 2-year structural progression in the IMI-APPROACH cohort. Quantitative Imaging in Medicine and Surgery. 2023;13(5):3298-306.
dc.identifier.issn2223-4306
dc.identifier.otherhttps://portalcientifico.sergas.gal//documentos/64fffbf3ab53484a60023f45
dc.identifier.urihttp://hdl.handle.net/20.500.11940/21703
dc.description.abstractIn the Innovative Medicine's Initiative Applied Public-Private Research enabling OsteoArthritis Clinical Headway (IMI-APPROACH) knee osteoarthritis (OA) study, machine learning models were trained to predict the probability of structural progression (s-score), predefined as >0.3 mm/year joint space width (JSW) decrease and used as inclusion criterion. The current objective was to evaluate predicted and observed structural progression over 2 years according to different radiographic and magnetic resonance imaging (MRI)-based structural parameters. Radiographs and MRI scans were acquired at baseline and 2-year followup. Radiographic (JSW, subchondral bone density, osteophytes), MRI quantitative (cartilage thickness), and MRI semiquantitative [SQ; cartilage damage, bone marrow lesions (BMLs), osteophytes] measurements were obtained. The number of progressors was calculated based on a change exceeding the smallest detectable change (SDC) for quantitative measures or a full SQ-score increase in any feature. Prediction of structural progression based on baseline s-scores and Kellgren-Lawrence (KL) grades was analyzed using logistic regression. Among 237 participants, around 1 in 6 participants was a structural progressor based on the predefined JSW-threshold. The highest progression rate was seen for radiographic bone density (39%), MRI cartilage thickness (38%), and radiographic osteophyte size (35%). Baseline s-scores could only predict JSW progression parameters (most P>0.05), while KL grades could predict progression of most MRI-based and radiographic parameters (P<0.05). In conclusion, between 1/6 and 1/3 of participants showed structural progression during 2-year follow-up. KL scores were observed to outperform the machine-learning-based s-scores as progression predictor. The large amount of data collected, and the wide range of disease stage, can be used for further development of more sensitive and successful (whole joint) prediction models. Trial Registration: Clinicaltrials.gov number NCT03883568.
dc.description.sponsorshipThe research leading to these results have received support from the Innovative Medicines Initiative Joint Undertaking under Grant Agreement no 115770, resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies' in-kind contribution. See www.imi.europa.eu and www.approachproject.eu.
dc.languageeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleMachine-learning predicted and actual 2-year structural progression in the IMI-APPROACH cohort
dc.typeArtigo
dc.authorsophosJansen, M.P.; Wirth, W.; Bacardit, J.; van Helvoort, E.M.; Marijnissen, A.C.A.; Kloppenburg, M.; Blanco, F.J.; Haugen, I.K.; Berenbaum, F.; Ladel, C.H.; Loef, M.; Lafeber, F.P.J.G.; Welsing, P.M.; Mastbergen, S.C.; Roemer, F.W.
dc.identifier.doi10.21037/qims-22-949
dc.identifier.sophos64fffbf3ab53484a60023f45
dc.issue.number5
dc.journal.titleQuantitative Imaging in Medicine and Surgery*
dc.organizationServizo Galego de Saúde::Áreas Sanitarias (A.S.) - Complexo Hospitalario Universitario A Coruña::Reumatoloxía
dc.page.initial3298
dc.page.final3306
dc.relation.projectIDInnovative Medicines Initiative Joint Undertaking from the European Union's Seventh Framework Programme (FP7/2007-2013) [115770]
dc.relation.projectIDEFPIA companies
dc.relation.publisherversionhttps://doi.org/10.21037/qims-22-949
dc.rights.accessRightsopenAccess*
dc.subject.keywordAS A Coruña
dc.subject.keywordCHUAC
dc.typefidesArtículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis)
dc.typesophosArtículo Original
dc.volume.number13


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International