Central melanin-concentrating hormone influences liver and adipose metabolism via specific hypothalamic nuclei and efferent autonomic/JNK1 pathways
Imbernon, M.; Beiroa Tarrío, Daniel; Vázquez López, Maria Josefa; Morgan, D. A.; Veyrat-Durebex, C.; Porteiro, B.; Díaz-Arteaga, A.; Senra, A.; Busquets, S.; Velásquez, D. A.; AL-MASSADI IGLESIAS, OMAR; Varela, L.; Gándara, M.; López-Soriano, F. J.; Gallego, R.; Seoane Camino, Luisa Maria; Argiles, J. M.; López, M.; Davis, R. J.; Sabio, G.; Rohner-Jeanrenaud, F.; Rahmouni, K.; Dieguez, C.; Nogueiras, R.
Files view or download
Files view or download
Date issued
2013Journal title
Gastroenterology
Type of content
Artigo
MeSH
Adipocytes | Adipose Tissue | Adiposity | Animals | Eating | Fatty Acids | Fatty Liver | Hypothalamic Area, Lateral | Hypothalamic Hormones | Lipid Metabolism/drug effects/physiology | Lipogenesis | Liver | Male | Melanins | Mice | Mitogen-Activated Protein Kinase 8 | Non-alcoholic Fatty Liver Disease | Pituitary Hormones | Rats | Rats, Sprague-Dawley | Receptors, Pituitary Hormone | Vagus NerveAbstract
BACKGROUND & AIMS: Specific neuronal circuits modulate autonomic outflow to liver and white adipose tissue. Melanin-concentrating hormone (MCH)-deficient mice are hypophagic, lean, and do not develop hepatosteatosis when fed a high-fat diet. Herein, we sought to investigate the role of MCH, an orexigenic neuropeptide specifically expressed in the lateral hypothalamic area, on hepatic and adipocyte metabolism. METHODS: Chronic central administration of MCH and adenoviral vectors increasing MCH signaling were performed in rats and mice. Vagal denervation was performed to assess its effect on liver metabolism. The peripheral effects on lipid metabolism were assessed by real-time polymerase chain reaction and Western blot. RESULTS: We showed that the activation of MCH receptors promotes nonalcoholic fatty liver disease through the parasympathetic nervous system, whereas it increases fat deposition in white adipose tissue via the suppression of sympathetic traffic. These metabolic actions are independent of parallel changes in food intake and energy expenditure. In the liver, MCH triggers lipid accumulation and lipid uptake, with c-Jun N-terminal kinase being an essential player, whereas in adipocytes MCH induces metabolic pathways that promote lipid storage and decreases lipid mobilization. Genetic activation of MCH receptors or infusion of MCH specifically in the lateral hypothalamic area modulated hepatic lipid metabolism, whereas the specific activation of this receptor in the arcuate nucleus affected adipocyte metabolism. CONCLUSIONS: Our findings show that central MCH directly controls hepatic and adipocyte metabolism through different pathways.