Mostrar el registro sencillo del ítem

dc.contributor.authorVillamarin Bello , María Beatriz
dc.contributor.authorURIEL LATORRE, BERTA MARIA 
dc.contributor.authorFdez-Riverola, F.
dc.contributor.authorSANDE MEIJIDE, MARIA 
dc.contributor.authorGlez-Pena, D.
dc.date.accessioned2022-01-27T10:40:39Z
dc.date.available2022-01-27T10:40:39Z
dc.date.issued2019
dc.identifier.issn2314-6133
dc.identifier.otherhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6778878/pdf/BMRI2019-1049575.pdfes
dc.identifier.urihttp://hdl.handle.net/20.500.11940/15965
dc.description.abstractHospital-acquired Infections (HAIs) surveillance, defined as the systematic collection of data related to a certain health event, is considered an essential dimension for a prevention HAI program to be effective. In recent years, new automated HAI surveillance methods have emerged with the wide adoption of electronic health records (EHR). Here we present the validation results against the gold standard of HAIs diagnosis of the InNoCBR system deployed in the Ourense University Hospital Complex (Spain). Acting as a totally autonomous system, InNoCBR achieves a HAI sensitivity of 70.83% and a specificity of 97.76%, with a positive predictive value of 77.24%. The kappa index for infection type classification is 0.67. Sensitivity varies depending on infection type, where bloodstream infection attains the best value (93.33%), whereas the respiratory infection could be improved the most (53.33%). Working as a semi-automatic system, InNoCBR reaches a high level of sensitivity (81.73%), specificity (99.47%), and a meritorious positive predictive value (94.33%).en
dc.language.isoenges
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.meshPopulation Surveillance*
dc.subject.meshHealth Information Systems*
dc.subject.meshHumans*
dc.subject.meshData Collection*
dc.subject.meshReference Standards*
dc.subject.meshSensitivity and Specificity*
dc.subject.meshCross Infection*
dc.subject.meshElectronic Health Records*
dc.titleGold Standard Evaluation of an Automatic HAIs Surveillance Systemen
dc.typeArtigoes
dc.identifier.doi10.1155/2019/1049575
dc.identifier.pmid31662963
dc.identifier.sophos32706
dc.issue.number-es
dc.journal.titleBioMed research internationales
dc.organizationServizo Galego de Saúde::Estrutura de Xestión Integrada (EOXI)::EOXI de Ourense, Verín e O Barco de Valdeorras - Complexo Hospitalario Universitario de Ourensees
dc.page.initial1049575es
dc.rights.accessRightsopenAccesses
dc.subject.decssistemas de información sanitaria*
dc.subject.decsestándares de referencia*
dc.subject.decsinfección hospitalaria*
dc.subject.decssensibilidad y especificidad*
dc.subject.decshistorias clínicas electrónicas*
dc.subject.decshumanos*
dc.subject.decsrecopilación de datos*
dc.subject.decsvigilancia de la población*
dc.subject.keywordCHUOes
dc.typefidesArtículo Originales
dc.typesophosArtículo Originales
dc.volume.number2019es


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional