A few-shot approach for COVID-19 screening in standard and portable chest X-ray images
Identificadores
Identificadores
Visualización ou descarga de ficheiros
Visualización ou descarga de ficheiros
Data de publicación
2022Título da revista
Scientific Reports
Tipo de contido
Article
Resumo
Reliable and effective diagnostic systems are of vital importance for COVID-19, specifically for triage and screening procedures. In this work, a fully automatic diagnostic system based on chest X-ray images (CXR) has been proposed. It relies on the few-shot paradigm, which allows to work with small databases. Furthermore, three components have been added to improve the diagnosis performance: (1) a region proposal network which makes the system focus on the lungs; (2) a novel cost function which adds expert knowledge by giving specific penalties to each misdiagnosis; and (3) an ensembling procedure integrating multiple image comparisons to produce more reliable diagnoses. Moreover, the COVID-SC dataset has been introduced, comprising almost 1100 AnteroPosterior CXR images, namely 439 negative and 653 positive according to the RT-PCR test. Expert radiologists divided the negative images into three categories (normal lungs, COVID-related diseases, and other diseases) and the positive images into four severity levels. This entails the most complete COVID-19 dataset in terms of patient diversity. The proposed system has been compared with state-of-the-art methods in the COVIDGR-1.0 public database, achieving the highest accuracy (81.13% ± 2.76%) and the most robust results. An ablation study proved that each system component contributes to improve the overall performance. The procedure has also been validated on the COVID-SC dataset under different scenarios, with accuracies ranging from 70.81 to 87.40%. In conclusion, our proposal provides a good accuracy appropriate for the early detection of COVID-19.











